干旱区研究 ›› 2022, Vol. 39 ›› Issue (2): 347-358.doi: 10.13866/j.azr.2022.02.02
收稿日期:
2021-08-25
修回日期:
2021-09-14
出版日期:
2022-03-15
发布日期:
2022-03-30
通讯作者:
许君利
作者简介:
王建(1979-),男,博士,副教授,主要从事寒区水资源与环境研究. E-mail: 基金资助:
WANG Jian1(),HAN Haidong2,XU Junli1(),YAN Wei3
Received:
2021-08-25
Revised:
2021-09-14
Online:
2022-03-15
Published:
2022-03-30
Contact:
Junli XU
摘要:
对内陆高寒山区的天山南坡科其喀尔冰川末端夏季降水进行采样,在分析各离子浓度、电导率和pH值的基础上,利用因子分析、富集因子及后向轨迹法,探讨区域降水的溶质来源及控制因素。结果表明:(1) 科其喀尔冰川末端大气降水的pH值介于7.15~8.52,整体偏弱碱性,阴、阳离子分别受HCO3-和Ca2+支配,属于典型HCO3-Ca型。白天降水的电导率和总离子浓度较夜间分别偏高11.56%和9.40%,这可能是在山谷风或冰川风作用下,塔里木盆地内气溶胶物质随近地层风从山麓地带与平原区迁移到研究区后湿沉降所致。(2) 降水离子主要来自地壳源物质补给,占总离子量的85.54%。其中HCO3-、Ca2+和Mg2+主要受侏罗系沉积层和第四系黄土沉积层中碳酸盐岩(CaxMg1-xCO3)风化补给,Cl-、SO42-、Na+和K+主要受中亚与塔里木盆地因干旱而发育的盐湖(咸水湖)蒸发或冲积/洪积作用形成的盐土风化补给。降水中仅有41.52%的Na+和96.22%的Cl-源自海洋源,且二者浓度之比为2.13:1,表明海洋源气团在长距离输送过程中明显地受到降水再蒸发作用和地表物质风蚀等因素的影响,导致海洋源补给量仅占降水总离子的4.87%。源自人类活动补给的溶质约是海洋源的2倍,以NH4+、NO3-和SO42-为主,可为高寒山区土壤形成和植被生长提供必要的氮、硫元素。(3) 气团后向轨迹追踪表明,西风环流对天山南坡降水及化学组成影响非常显著,形成降水的频次和降水量平均分别占64.35%和53.04%,其降水的离子总浓度虽然仅为局地环流的69.91%,但NO3-浓度平均为局地环流降水的1.42倍,间接表明塔里木盆地空气与水源质量可能受到中亚人类活动的影响。
王建,韩海东,许君利,颜伟. 天山科其喀尔冰川末端降水化学特征及控制因素[J]. 干旱区研究, 2022, 39(2): 347-358.
WANG Jian,HAN Haidong,XU Junli,YAN Wei. Chemical characteristics and their influencing factors of precipitation at the end of the Koxkar Glacier, Tianshan Mountains[J]. Arid Zone Research, 2022, 39(2): 347-358.
表1
不同时期降水化学组成的降水量加权平均值"
时期 | 样品数 | 离子浓度/(μeq·L-1) | 电导率/(μS·cm-1) | pH | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cl- | | | | Na+ | | K+ | Mg2+ | Ca2+ | 总离子 | ||||
6月 | 45 | 17.38 | 24.77 | 18.97 | 383.28 | 40.70 | 43.81 | 3.07 | 43.06 | 313.77 | 888.81 | 49.54 | 7.97 |
7月 | 44 | 18.79 | 32.30 | 46.09 | 496.76 | 40.89 | 61.70 | 6.25 | 52.95 | 432.15 | 1187.88 | 64.70 | 7.74 |
8月 | 30 | 34.12 | 43.46 | 29.79 | 539.54 | 68.48 | 53.82 | 5.67 | 55.56 | 463.37 | 1293.81 | 67.71 | 7.75 |
9月 | 15 | 39.57 | 49.09 | 20.06 | 544.23 | 79.94 | 56.76 | 6.12 | 53.92 | 456.20 | 1305.89 | 68.84 | 7.70 |
白天 | 99 | 25.38 | 34.14 | 25.51 | 490.07 | 54.42 | 50.03 | 4.56 | 51.57 | 414.50 | 1150.18 | 62.44 | 7.84 |
夜里 | 35 | 20.38 | 34.18 | 44.32 | 426.80 | 42.76 | 62.83 | 6.38 | 46.78 | 366.94 | 1051.38 | 55.97 | 7.74 |
观测期 | 134 | 24.07 | 34.15 | 30.42 | 473.54 | 51.38 | 53.38 | 5.04 | 50.32 | 402.07 | 1124.37 | 60.75 | 7.81 |
表3
科其喀尔冰川末端降水中离子组分相对于海洋和地壳源的富集因子"
来源 | | | Ca2+/Cl- | Na+/Cl- | Mg2+/Cl- | K+/Cl- | | |
---|---|---|---|---|---|---|---|---|
海水 | 0.104 | 0.000017 | 0.038 | 0.86 | 0.195 | 0.019 | 0.0043 | 0.016 |
降水 | 1.419 | 1.264 | 16.704 | 2.134 | 2.091 | 0.209 | 19.674 | 2.218 |
EF海洋源 | 13.64 | 74346.56 | 439.59 | 2.48 | 10.72 | 11.02 | 4531.11 | 134.54 |
来源 | | | Cl-/Ca2+ | Na+/Ca2+ | Mg2+/Ca2+ | K+/Ca2+ | - | - |
地壳 | 0.005 | 0.004 | 0.001 | 0.821 | 0.876 | 0.272 | - | - |
降水 | 0.085 | 0.076 | 0.060 | 0.128 | 0.125 | 0.013 | - | - |
EF地壳源 | 17.23 | 17.11 | 47.63 | 0.16 | 0.14 | 0.05 | - | - |
表4
不同来源对研究区降水主要离子的贡献比例"
时间 | 海洋源 | 地壳源 | 人类活动 | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cl- | | | Na+ | | K+ | Mg2+ | Ca2+ | Cl- | | | | Na+ | K+ | Mg2+ | Ca2+ | | | | |||
白天 | 96.30 | 6.87 | 0.02 | 40.25 | 2.37 | 8.81 | 10.68 | 0.24 | 3.70 | 8.74 | 10.84 | 99.98 | 59.75 | 91.19 | 89.32 | 99.76 | 84.39 | 89.15 | 97.63 | ||
夜里 | 96.02 | 6.24 | 0.02 | 45.10 | 2.61 | 8.08 | 9.58 | 0.21 | 3.98 | 9.98 | 12.78 | 99.98 | 54.90 | 91.92 | 90.42 | 99.79 | 83.78 | 87.22 | 97.39 | ||
观测期 | 96.22 | 6.70 | 0.02 | 41.52 | 2.44 | 8.62 | 10.39 | 0.23 | 3.78 | 9.07 | 11.35 | 99.98 | 58.48 | 91.38 | 89.61 | 99.77 | 84.23 | 88.65 | 97.56 |
表5
不同来源的降水及各离子雨量加权的平均浓度"
年份 | 来源路径 | 降水频次 占比/% | 降水比率 /% | 离子浓度/(μeq·L-1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cl- | | | | Na+ | | K+ | Mg2+ | Ca2+ | 总离子 | ||||
2013 | 1 | 58.46 | 53.42 | 32.64 | 34.33 | 40.05 | 310.16 | 55.40 | 48.34 | 4.07 | 35.24 | 274.12 | 834.36 |
2 | 12.31 | 5.18 | 38.22 | 53.07 | 63.56 | 371.99 | 62.66 | 59.57 | 10.66 | 47.91 | 345.84 | 1053.48 | |
3 | 26.15 | 34.34 | 20.35 | 39.58 | 30.91 | 658.05 | 36.32 | 71.56 | 9.56 | 42.23 | 589.27 | 1497.83 | |
4 | 3.08 | 7.06 | 12.43 | 27.94 | 31.76 | 379.02 | 60.44 | 85.96 | 3.69 | 35.65 | 265.41 | 902.30 | |
均值 | 49.83(3) | 27.23 | 36.68 | 37.54 | 371.07 | 49.50 | 59.59 | 6.22 | 38.22 | 318.40 | 944.46 | ||
2014 | 1 | 11.59 | 3.38 | 42.89 | 31.12 | 34.72 | 346.92 | 56.81 | 49.33 | 3.49 | 44.93 | 301.10 | 911.31 |
2 | 46.38 | 44.15 | 25.71 | 26.54 | 27.85 | 520.63 | 56.71 | 32.70 | 3.79 | 65.66 | 441.88 | 1201.46 | |
3 | 40.58 | 52.43 | 16.16 | 35.80 | 18.87 | 636.20 | 49.91 | 59.37 | 3.95 | 60.80 | 533.10 | 1414.16 | |
4 | 1.45 | 0.05 | 24.16 | 35.56 | 37.21 | 476.56 | 36.69 | 48.30 | 4.32 | 54.64 | 429.53 | 1146.98 | |
均值 | 50.17(4) | 20.94 | 31.64 | 23.35 | 575.32 | 53.24 | 47.20 | 3.86 | 62.34 | 485.18 | 1303.07 | ||
采样期 | 西风环流(1) | 65.08 | 53.07 | 30.02 | 31.41 | 35.21 | 412.26 | 56.37 | 41.59 | 4.21 | 50.32 | 356.42 | 1017.81 |
局地环流(2) | 33.39 | 43.42 | 18.25 | 37.69 | 24.87 | 647.09 | 43.14 | 65.44 | 6.75 | 51.55 | 561.09 | 1455.85 | |
其他源 | 2.26 | 3.54 | 12.43 | 27.94 | 31.76 | 379.02 | 60.44 | 85.96 | 3.69 | 35.65 | 265.41 | 902.30 |
[1] |
Laouali D, Delon C, Adon M, et al. Source contributions in precipitation chemistry and analysis of atmospheric nitrogen deposition in a Sahelian dry savanna site in West Africa[J]. Atmospheric Research, 2021, 251:105423.
doi: 10.1016/j.atmosres.2020.105423 |
[2] | Vet R, Artz R S, Carou S, et al. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus[J]. Atmospheric Environment, 2014, 93:3-100. |
[3] | 马珊, 夏敦胜, 李忠勤, 等. 沙尘暴对天山托木尔峰青冰滩72号冰川环境的影响[J]. 冰川冻土, 2018, 40(4):685-694. |
[ Ma Shan, Xia Dunsheng, Li Zhongqin, et al. Impact of sandstorm events on the environment of the Qingbingtan Glacier No.72 in the Mt. Tumur, Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2018, 40(4):685-694. ] | |
[4] |
Akpo A, Galy-Lacaux C, Laouali D, et al. Precipitation chemistry and wet deposition in a remote wet savanna site in West Africa: Djougou (Benin)[J]. Atmospheric Environment, 2015, 115:110-123.
doi: 10.1016/j.atmosenv.2015.04.064 |
[5] | 汪少勇, 何晓波, 吴锦奎, 等. 长江源区大气降水化学特征及离子来源[J]. 环境科学, 2019, 40(10):4431-4438. |
[ Wang Shaoyong, He Xiaobo, Wu Jinkui, et al. Chemical characteristics and ionic sources of precipitation in the source region of the Yangtze River[J]. Environmental Science, 2019, 40(10):4431-4438. ] | |
[6] | Galy-Lacaux C, Laouali D, Descroix L, et al. Long term precipitation chemistry and wet deposition in a remote dry savanna site in Africa (Niger)[J]. Atmospheric Chemistry and Physics, 2009, 9:1579-1595. |
[7] |
Cook E M, Sponseller R, Grimm N B, et al. Mixed method approach to assess atmospheric nitrogen deposition in arid and semi-arid ecosystems[J]. Environmental Pollution, 2018, 239:617-630.
doi: 10.1016/j.envpol.2018.04.013 |
[8] |
Xiao J, Jin Z D, Hu D, et al. Geochemistry and solute sources of surface waters of the Tarim River Basin in the extreme arid region, NW Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2012, 54-55:162-173.
doi: 10.1016/j.jseaes.2012.04.009 |
[9] |
Wu G J, Zhang X L, Zhang C L, et al. Concentration and composition of dust particles in surface snow at Urumqi Glacier No.1, Eastern Tien Shan[J]. Global and Planetary Change, 2010, 74:34-42.
doi: 10.1016/j.gloplacha.2010.07.008 |
[10] | Wang J, Han H D, Zhao Q D, et al. Hydrochemical denudation and transient carbon dioxide drawdown in the highly glacierized, shrinking Koxkar basin, China[J]. Advances in Meteorology, 2016, 1:1-11. |
[11] |
Wu H W, Wu J L, Li J, et al. Spatial variations of hydrochemistry and stable isotopes in mountainous river water from the Central Asian headwaters of the Tajikistan Pamirs[J]. Catena, 2020, 193:104639.
doi: 10.1016/j.catena.2020.104639 |
[12] |
Li Y F, Huang J, Li Z, et al. Atmospheric pollution revealed by trace elements in recent snow from the central to the northern Tibetan Plateau[J]. Environmental Pollution, 2020, 263(Part A):114459.
doi: 10.1016/j.envpol.2020.114459 |
[13] |
刘小康, 饶志国, 张肖剑, 等. 天山地区大气降水氧同位素的影响因素及其对西风环流变化的指示意义[J]. 地理学报, 2015, 70(1):97-109.
doi: 10.11821/dlxb201501008 |
[ Liu Xiaokang, Rao Zhiguo, Zhang Xiaojian, et al. Variations in the oxygen isotopic composition of precipitation in the Tianshan Mountains region and their significance for the Westerly circulation[J]. Acta Geographica Sinica, 2015, 70(1):97-109. ]
doi: 10.11821/dlxb201501008 |
|
[14] | 贾文雄, 李宗省. 祁连山东段降水的水化学特征及离子来源研究[J]. 环境科学, 2016, 37(9):3322-3332. |
[ Jia Wenxiong, Li Zongxing. Hydrochemical characteristics and sources of ions in precipitation at the East Qilian Mountains[J]. Environmental Science, 2016, 37(9):3322-3332. ] | |
[15] |
Han H D, Wang J, Wei J F, et al. Backwasting rate on debris-covered Koxkar glacier, Tuomuer mountain, China[J]. Journal of Glaciology, 2010, 56:287-296.
doi: 10.3189/002214310791968430 |
[16] | 赵求东, 叶柏生, 丁永建, 等. 典型寒区流域水文过程模拟及分析[J]. 冰川冻土, 2011, 33(3):595-605. |
[ Zhao Qiudong, Ye Baisheng, Ding Yongjian, et al. Hydrological process of a typical catchment in cold region: simulation and analysis[J]. Journal of Glaciology and Geocryology, 2011, 33(3):595-605. ] | |
[17] | 韩海东, 刘时银, 丁永建, 等. 科其喀尔巴西冰川的近地层基本气象特征[J]. 冰川冻土, 2008, 30(6):967-975. |
[ Han Haidong, Liu Shiyin, Ding Yongjian, et al. Near-surface meteorological characteristics on the Koxkar Baxi Glacier, Tianshan[J]. Journal of Glaciology and Geocryology, 2008, 30(6):967-975. ] | |
[18] | 谢姆斯叶·艾尼瓦尔, 塔西甫拉提·特依拜, 买买提·沙吾提, 等. 近50年来塔里木盆地南、北缘干湿状况变化趋势分析[J]. 干旱区资源与环境, 2013, 21(3):40-46. |
[ Shamsiya Anwar, STashpolat Tiyip, SMamat Sawut, et al. The variation trend of surface dry-wet conditions in recent 50 years in the southern and northern edge of Tarim Basin[J]. Journal of Arid Land Resources and Environment, 2013, 21(3):40-46. ] | |
[19] |
Chen X L, Song Y G, Li Y, et al. Provenance of sub-aerial surface sediments in the Tarim Basin, Western China[J]. Catena, 2021, 198:105014.
doi: 10.1016/j.catena.2020.105014 |
[20] | 董志文, 任贾文, 秦大河, 等. 祁连山老虎沟12号冰川积雪化学特征及环境意义[J]. 冰川冻土, 2013, 3(2):327-335. |
[ Dong Zhiwen, Ren Jiawen, Qin Dahe, et al. Chemistry characteristics and environmental significance of snow deposited on the Laohugou Glacier No. 12, Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2013, 3(2):327-335. ] | |
[21] | 钟玉婷, 刘新春, 范子昂, 等. 乌鲁木齐降水化学成分及来源分析[J]. 沙漠与绿洲气象, 2016, 10(6):81-87. |
[ Zhong Yuting, Liu Xinchun, Fan Ziang, et al. Chemical characteristics and source assessment of atmospheric precipitation in Urumqi[J]. Desert and Oasis Meteorology, 2016, 10(6):81-87. ] | |
[22] | 钟玉婷, 刘新春, 何清, 等. 伊宁市降水化学成分及来源分析[J]. 沙漠与绿洲气象, 2016, 10(3):77-82. |
[ Zhong Yuting, Liu Xinchun, He Qing, et al. Chemical characteristics and source assessment of atmospheric precipitation at Yining, Xinjiang[J]. Desert and Oasis Meteorology, 2016, 10(3):77-82. ] | |
[23] | 陈堂清, 饶文波, 金可, 等. 阿拉善沙漠高原降水化学特征与离子来源判别[J]. 环境科学研究, 2018, 31(12):2083-2093. |
[ Chen Tangqing, Rao Wenbo, Jin Ke, et al. Chemical characteristics and major ion sources of precipitation in the Alxa Desert Plateau[J]. Research of Environmental Sciences, 2018, 31(12):2083-2093. ] | |
[24] | 王晓艳, 蒋缠文. 东天山哈密榆树沟流域夏季降水的化学特征[J]. 干旱区研究, 2018, 35(2):277-286. |
[ Wang Xiaoyan, Jiang Chanwen. Chemical properties of summer precipitation in the Yushugou River Basin in the East Tianshan Mountains[J]. Arid Zone Research, 2018, 35(2):277-286. ] | |
[25] | 孙俊英, 秦大河, 任贾文, 等. 乌鲁木齐河源区水体和大气气溶胶化学成分研究[J]. 冰川冻土, 2002, 24(2):186-191. |
[ Sun Junying, Qin Dahe, Ren Jiawen, et al. A study of water chemistry and aerosol at the headwaters of the Urumqi River in the Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2002, 24(2):186-191. ] | |
[26] | 宋友桂, 宗秀兰, 李越, 等. 中亚黄土沉积与西风区末次冰期快速气候变化[J]. 第四纪研究, 2019, 39(3):535-548. |
[ Song Yougui, Zong Xiulan, Li Yue, et al. Loess sediments and rapid climate oscillation during the last glacial period in the westerlies-dominated central Asia[J]. Quaternary Sciences, 2019, 39(3):535-548. ] | |
[27] | 肖致美, 李鹏, 陈魁, 等. 天津市大气降水化学组成特征及来源分析[J]. 环境科学研究, 2015, 28(7):1025-1030. |
[ Xiao Zhimei, Li Peng, Chen Kui, et al. Characteristics and sources of chemical composition of atmospheric precipitation in Tianjin[J]. Research of Environmental Sciences, 2015, 28(7):1025-1030. ] | |
[28] |
Keene W C, Pszenny A, Galloway J N, et al. Sea-salt corrections and interpretation of constituent ratios in marine precipitation[J]. Journal of Geophysical Research: Atmospheres, 1986, 91(D6):6647-6658.
doi: 10.1029/JD091iD06p06647 |
[29] | 肖辉, 沈志来, 黄美元. 西太平洋热带海域降水化学特征[J]. 环境科学学报, 1993, 13(2):143-149. |
[ Xiao Hui, Shen Zhilai, Huang Meiyuan. Chemical characteristics of tropical Western Pacific precipitation[J]. Acta Scientiae Circumstantiae, 1993, 13(2):143-149. ] | |
[30] | 李晓刚, 赵良菊, 刘琼, 等. 秦岭山区商洛市大气降水化学组成特征及来源分析[J]. 水资源与水工程学报, 2020, 31(4):24-30. |
[ Li Xiaogang, Zhao Liangju, Liu Qiong, et al. Chemical composition of precipitation and its sources in Shangluo City of Qinling mountainous area[J]. Journal of Water Resources & Water Engineering, 2020, 31(4):24-30. ] | |
[31] | Zhang L Y, Qiao B Q, Wang H B, et al. Chemical characteristics of precipitation in a typical urban site of the Hinterland in Three Gorges Reservoir, China[J]. Journal of Chemistry, 2018, 2018:2914313. |
[32] |
Cerqueira M R, Pinto M F, Derossi I N, et al. Chemical characteristics of rainwater at a southeastern site of Brazil[J]. Atmospheric Pollution Research, 2014, 5:253-261.
doi: 10.5094/APR.2014.031 |
[33] | 黎彤, 倪守斌. 塔里木—华北板块的地壳和岩石圈元素丰度[J]. 地质与勘探, 1998, 34(1):20-24. |
[ Li Tong, Ni Shoubin. Element abundances of the crust and lithosphere in Tarim-N. China plate[J]. Geology and Prospecting, 1998, 34(1):20-24. ] | |
[34] |
Marrugo-Negrete J, Pinedo-Hernández J, Díez S. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia[J]. Environmental Research, 2017, 154:380-388.
doi: S0013-9351(16)30956-2 pmid: 28189028 |
[35] |
Kumar A, Tiwari S, Verma A, et al. Tracing isotopic signatures (δD and δ18O) in precipitation and glacier melt over Chorabari Glacier-Hydroclimatic inferences for the Upper Ganga Basin (UGB), Garhwal Himalaya[J]. Journal of Hydrology: Regional Studies, 2018, 15:68-89.
doi: 10.1016/j.ejrh.2017.11.009 |
[36] | 王建, 韩海东, 许君利, 等. 塔里木河流域出山径流水化学特征研究[J]. 中国环境科学, 2021, 41(4):1576-1587. |
[ Wang Jian, Han Haidong, Xu Junli, et al. Hydrochemical characteristics of the mountain runoff in Tarim River Basin, China[J]. China Environmental Science, 2021, 41(4):1576-1587. ] | |
[37] | 汤洁, 薛虎圣, 于晓岚, 等. 瓦里关山降水化学特征的初步分析[J]. 环境科学学报, 2000, 20(4):420-425. |
[ Tang Jie, Xue Husheng, Yu Xiaoluan, et al. The preliminary study on chemical characteristics of precipitation at Mt. Waliguan[J]. Acta Scientiae Circumstantiae, 2000, 20(4):420-425. ] | |
[38] |
Du Z H, Xiao C D, Wang Y Z, et al. Dust provenance in Pan-third pole modern glacierized regions: What is the regional source?[J]. Environmental Pollution, 2019, 250:762-772.
doi: 10.1016/j.envpol.2019.04.068 |
[39] | Wang X, Carrapa B, Sun Y, et al. The role of the westerlies and orography in Asian hydroclimate since the late Oligocene[J]. Geology, 2020, 48:1-5. |
[40] | 侯书贵. 乌鲁木齐河源区大气降水的化学特征[J]. 冰川冻土, 2001, 23(1):80-84. |
[ Hou Shugui. Chemical characteristics of precipitation at the headwaters of the Urumqi River in the Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2001, 23(1):80-84. ] | |
[41] | 中国科学院登山科学考察队. 天山托木尔峰地区的地质与古生物[M]. 乌鲁木齐: 新疆人民出版社, 1985. |
[Mountaineering expedition team of the Chinese Academy of Sciences. Geology and paleontology of Tuomuerfeng area in Tianshan Mountains[M]. Urumqi: Xinjiang People’s Publishing House, 1985. ] | |
[42] | 张东, 黄兴宇, 李成杰. 自然与人为控制下河流水化学组成演变过程[J]. 干旱区资源与环境, 2012, 26(12):75-80. |
[ Zhang Dong, Huang Xingyu, Li Chengjie. Natural and anthropogenic factors controlling river water hydrochemical evolution[J]. Journal of Arid Land Resources and Environment, 2012, 26(12):75-80. ] | |
[43] |
Huang S C, Wortmann M, Duethmann D, et al. Adaptation strategies of agriculture and water management to climate change in the Upper Tarim River basin, NW China[J]. Agricultural Water Management, 2018, 203:207-224.
doi: 10.1016/j.agwat.2018.03.004 |
[44] | 陶辉, 毛炜峄, 黄金龙, 等. 塔里木河流域干湿变化与大气环流关系[J]. 水科学进展, 2014, 25(1):45-52. |
[ Tao Hui, Mao Weiyi, Huang Jinlong, et al. Drought and wetness variability in the Tarim river basin and possible associations with large scale circulation[J]. Advances in Water Science, 2014, 25(1):45-52. ] | |
[45] |
Du W T, Kang S C, Qin X, et al. Can summer monsoon moisture invade the Jade Pass in Northwestern China?[J]. Climate Dynamics, 2020, 55:3101-3115.
doi: 10.1007/s00382-020-05423-y |
[1] | 赵雨琪, 魏天兴. 1990—2020年黄土高原典型县域植被覆盖变化及影响因素[J]. 干旱区研究, 2024, 41(1): 147-156. |
[2] | 胡广录,陶虎,焦娇,白元儒,陈海志,麻进. 黑河中游正义峡径流变化趋势及归因分析[J]. 干旱区研究, 2023, 40(9): 1414-1424. |
[3] | 张晓敏, 张东梅, 张伟. 人类活动对额尔齐斯河流域碳储量的影响[J]. 干旱区研究, 2023, 40(8): 1333-1345. |
[4] | 段雨佳, 何毅, 赵杰, 吴琼. 人类活动对秦岭月河流域径流变化的影响分析[J]. 干旱区研究, 2023, 40(4): 605-614. |
[5] | 王怡恩, 饶良懿. 气候因素和人类活动对砒砂岩区植被净初级生产力的影响[J]. 干旱区研究, 2023, 40(12): 1982-1995. |
[6] | 陈红光, 孟凡浩, 萨楚拉, 罗敏, 王牧兰, 刘桂香. 北方牧区草原内陆河流域径流演变特征及其驱动因素分析[J]. 干旱区研究, 2023, 40(1): 39-50. |
[7] | 何启欣,曹广超,曹生奎,程梦园,刁二龙,高斯远,邱巡巡,赵美亮,程国. 香日德-柴达木河流域水体氢氧稳定同位素特征及影响因素研究[J]. 干旱区研究, 2022, 39(3): 820-828. |
[8] | 张赟鑫,郝海超,范连连,李耀明,张仁平,李凯辉. 中亚草地NPP时空动态及其驱动因素研究[J]. 干旱区研究, 2022, 39(3): 698-707. |
[9] | 杨丹,王晓峰. 黄土高原气候和人类活动对植被NPP变化的影响[J]. 干旱区研究, 2022, 39(2): 584-593. |
[10] | 刘强,尉飞鸿,常康飞,王瑞,景元宁,穆兴民. 皇甫川流域水沙变化特征及其影响因素[J]. 干旱区研究, 2021, 38(6): 1506-1513. |
[11] | 曾康康,杨余辉,胡义成,冯先成. 喀什河流域降水同位素特征及水汽来源分析[J]. 干旱区研究, 2021, 38(5): 1263-1273. |
[12] | 张玉欣,马学谦,韩辉邦,张鹏亮,刘娜. 2014—2018年青海省云水资源时空分布特征[J]. 干旱区研究, 2021, 38(5): 1254-1262. |
[13] | 屈莹波,赵媛媛,丁国栋,高广磊. 气候变化和人类活动对锡林郭勒草原植被覆盖度的影响[J]. 干旱区研究, 2021, 38(3): 802-811. |
[14] | 李晓媛, 于德永. 蒸散发估算方法及其驱动力研究进展[J]. 干旱区研究, 2020, 37(1): 26-36. |
[15] | 李建飞, 李小兵, 周义. 2000—2015年乌兰察布市生长季NDVI时空变化及其影响因素[J]. 干旱区研究, 2019, 36(5): 1238-1249. |
|