干旱区研究 ›› 2021, Vol. 38 ›› Issue (6): 1741-1749.doi: 10.13866/j.azr.2021.06.26 cstr: 32277.14.AZR.20210626
徐接亮1(),张凤华1,2,李变变1,王家平1,2,程志博1,2()
收稿日期:
2021-04-14
修回日期:
2021-08-30
出版日期:
2021-11-15
发布日期:
2021-11-29
作者简介:
徐接亮(1995-),女,硕士研究生,主要研究方向为绿洲生态与农作制度. E-mail: 基金资助:
XU Jieliang1(),ZHANG Fenghua1,2,LI Bianbian1,WANG Jiaping1,2,CHENG Zhibo1,2()
Received:
2021-04-14
Revised:
2021-08-30
Published:
2021-11-15
Online:
2021-11-29
摘要:
以新疆沙区油莎豆为研究对象,探究不同施肥处理对油莎豆根际土壤微生物群落组成和多样性的影响,对于新疆沙区油莎豆的田间养分管理和地力提升具有重要意义。结果表明:施肥均显著提高了油莎豆根际土壤有机质(OM)、有效磷(AP)、碱解氮(AN)和速效钾(AK)含量(P<0.05)。油莎豆根际土壤细菌和真菌的多样性指数(Chao、Ace和Shannon指数)随施肥量的增加呈降低趋势;根际土壤优势细菌群落为放线菌门(Actinobacteria)、变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)和绿弯菌门(Chloroflexi),真菌的优势菌群为子囊菌门(Ascomycota)和担子菌门(Basidiomycota)。冗余分析表明:土壤pH和电导率(EC)与主要的优势细菌门呈显著相关关系,土壤含水率与主要的优势真菌群落显著相关。综上所述,施肥通过影响土壤理化性质而改变油莎豆根际的土壤微生物群落结构和多样性,随施肥量的增加根际土壤微生物多样性均出现降低。土壤pH和EC是影响土壤细菌群落变化的驱动因子,影响真菌群落变化的主要因子为土壤有机质和含水率。
徐接亮,张凤华,李变变,王家平,程志博. 施肥对油莎豆根际微生物群落特性的影响[J]. 干旱区研究, 2021, 38(6): 1741-1749.
XU Jieliang,ZHANG Fenghua,LI Bianbian,WANG Jiaping,CHENG Zhibo. Effect of fertilization on the characteristics of soil microbial community in the rhizosphere of Cyperus esculentus in the sandy area of Xinjiang[J]. Arid Zone Research, 2021, 38(6): 1741-1749.
表2
不同处理油莎豆土壤理化性质的变化"
处理 | 速效钾AK /(mg·kg-1) | 有效磷AP /(mg·kg-1) | 碱解氮AN /(mg·kg-1) | 有机质OM /(g·kg-1) | pH | 电导率EC /(μS·cm-1) | 含水率WC/% |
---|---|---|---|---|---|---|---|
CK | 35.78±1.20c | 17.75±1.66c | 9.10±0.70c | 1.08±0.10b | 9.45±0.12a | 107.73±24.28a | 7.22±0.42a |
F1 | 41.00±2.44b | 23.50±0.97b | 14.70±1.85b | 1.24±0.09a | 9.49±0.27a | 109.00±31.10a | 7.14±0.28a |
F2 | 43.79±2.80ab | 25.62±0.63b | 16.22±2.67b | 1.32±0.20a | 9.27±0.10b | 118.23±34.28a | 6.56±0.18a |
F3 | 47.54±3.21a | 29.65±2.46a | 19.83±1.07a | 1.80±0.10a | 9.14±0.03c | 125.47±11.61a | 6.48±0.73a |
表3
不同施肥处理土壤微生物多样性指数"
多样性指数 | CK | F1 | F2 | F3 | |
---|---|---|---|---|---|
细菌 | Shannon | 1.87±0.05a | 1.84±0.05a | 1.82±0.04ab | 1.74±0.05b |
Simpson | 0.23±0.02a | 0.24±0.01a | 0.25±0.01a | 0.25±0.01a | |
Ace | 38.86±2.47a | 33.52±1.26b | 31.67±0.88bc | 29.63±0.74c | |
Chao | 35.00±1.00a | 33.50±0.87ab | 32.78±0.69b | 29.28±0.86c | |
真菌 | Shannon | 3.23±0.21a | 3.16±0.34ab | 2.72±0.20bc | 2.52±0.27c |
Simpson | 0.08±0.02c | 0.10±0.01bc | 0.12±0.01ab | 0.15±0.02a | |
Ace | 155.41±14.96a | 143.71±30.10ab | 123.27±12.00ab | 111.31±16.46b | |
Chao | 154.86±18.43a | 140.89±16.05ab | 124.01±12.00ab | 115.66±16.22b |
表4
土壤微生物群落多样性指数与土壤理化性质相关性分析"
AK | AP | AN | OM | pH | EC | WC | ||
---|---|---|---|---|---|---|---|---|
细菌指数 | Shannon | 0.362 | 0.555 | 0.578* | 0.568 | -0.544 | 0.139 | -0.229 |
Simpson | -0.684* | -0.659* | -0.700* | -0.755** | 0.664* | -0.134 | 0.087 | |
Ace | -0.818** | -0.838** | -0.874** | -0.806** | 0.511 | -0.173 | 0.501 | |
Chao | -0.786** | -0.826** | -0.800** | -0.927** | 0.579* | -0.434 | 0.472 | |
真菌指数 | Shannon | 0.578* | 0.557 | 0.385 | 0.537 | -0.407 | 0.330 | 0.165 |
Simpson | -0.624* | -0.618* | -0.509 | -0.634* | 0.646* | -0.371 | -0.051 | |
Ace | -0.259 | -0.236 | -0.300 | -0.305 | 0.373 | -0.285 | 0.103 | |
Chao | -0.270 | -0.232 | -0.289 | -0.360 | 0.370 | -0.400 | 0.097 |
[1] |
Meng F, Qiao Y, Wu W, et al. Environmental impacts and production performances of organic agriculture in China: A monetary valuation[J]. Journal of Environmental Management, 2017, 188:49-57.
doi: 10.1016/j.jenvman.2016.11.080 |
[2] | 张汉波, 段昌群, 屈良鹄. 非培养方法在土壤微生物生态学研究中的应用[J]. 生态学杂志, 2003, 22(5):131-136. |
[ Zhang Hanbo, Duan Changqun, Qu Lianghu. Application of non-cultivation methods in soil microbial ecology research[J]. Journal of Ecology, 2003, 22(5):131-136. ] | |
[3] | 戴雅婷, 侯向阳, 闫志坚, 等. 库布齐沙地两种植被恢复类型根际土壤微生物和土壤化学性质比较研究[J]. 生态学报, 2016, 36(20):6353-6364. |
[ Dai Yating, Hou Xiangyang, Yan Zhijian, et al. Comparative study on rhizosphere soil microbes and soil chemical properties of two types of vegetation restoration in Kubuqi Sandy Land[J]. Acta Ecologica Sinica, 2016, 36(20):6353-6364. ] | |
[4] | 徐万里, 唐光木, 葛春辉, 等. 长期施肥对新疆灰漠土土壤微生物群落结构与功能多样性的影响[J]. 生态学报, 2015, 35(2):468-477. |
[ Xu Wanli, Tang Guangmu, Ge Chunhui, et al. Effects of long-term fertilization on soil microbial community structure and functional diversity in gray desert soil in Xinjiang[J]. Acta Ecologica Sinica, 2015, 35(2):468-477. ] | |
[5] | 李发奎, 李金霞, 孙小妹, 等. 黑果枸杞茎叶生长及其生态化学计量特征对灌水施肥的响应[J]. 干旱区研究, 2020, 37(2):452-461. |
[ Li Fakui, Li Jinxia, Sun Xiaomei, et al. Responses of stem and leaf growth and ecological stoichiometric characteristics of Lycium ruthenicum to irrigation and fertilization[J]. Arid Zone Research, 2020, 37(2):452-461. ] | |
[6] | 王勇, 赵成义. 不同水肥条件对绿洲农田土壤N2O排放的影响[J]. 干旱区研究, 2018, 35(4):938-944. |
[ Wang Yong, Zhao Chengyi. Effects of different water and fertilizer conditions on N2O emissions from oasis farmland soil[J]. Arid Zone Research, 2018, 35(4):938-944. ] | |
[7] | 张恩平, 田悦悦, 李猛, 等. 长期不同施肥对番茄根际土壤微生物功能多样性的影响[J]. 生态学报, 2018, 38(14):5027-5036. |
[ Zhang Enping, Tian Yueyue, Li Meng, et al. Effects of long-term different fertilization on the functional diversity of tomato rhizosphere soil microorganisms[J]. Acta Ecologica Sinica, 2018, 38(14):5027-5036. ] | |
[8] | 芦思佳, 韩晓增, 张迪, 等. 长期施肥对大豆根际微生物量碳、氮的影响[J]. 大豆科学, 2009, 28(3):495-498. |
[ Lu Sijia, Han Xiaozeng, Zhang Di, et al. Effects of long-term fertilization on soybean rhizosphere microbial biomass carbon and nitrogen[J]. Soybean Science, 2009, 28(3):495-498. ] | |
[9] | 唐海明, 肖小平, 李微艳, 等. 长期施肥对双季稻田根际土壤微生物群落功能多样性的影响[J]. 生态环境学报, 2016, 25(3):402-408. |
[ Tang Haiming, Xiao Xiaoping, Li Weiyan, et al. Effects of long-term fertilization on the functional diversity of rhizosphere soil microbial communities in double-cropping rice fields[J]. Acta Eco-Environmental Sciences, 2016, 25(3):402-408. ] | |
[10] |
Wang C, Liu D, Bai E. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition[J]. Soil Biology and Biochemistry, 2018, 120:126-133.
doi: 10.1016/j.soilbio.2018.02.003 |
[11] |
Travlos I S, Economou G, Kotoulas V E, et al. Potential effects of diurnally alternating temperatures and solarization on purple nutsedge (Cyperus rotundus) tuber sprouting[J]. Journal of Arid Environments, 2009, 73(1):22-25.
doi: 10.1016/j.jaridenv.2008.09.006 |
[12] | 赵小庆, 刘和, 路战远, 等. 北方风沙区油莎豆防风固沙技术模式[J]. 现代农业, 2019, 45(7):13-14. |
[ Zhao Xiaoqing, Liu He, Lu Zhanyuan, et al. The wind-proof and sand-fixing technology model of Cyperus esculentus in the northern sandstorm area[J]. Modern Agriculture, 2019, 45(7):13-14. ] | |
[13] | 张小燕. 油莎豆的主要高产栽培技术[J]. 农业科技通讯, 2009, 38(6):165-166. |
[ Zhang Xiaoyan. The main high-yield cultivation techniques of Cyperus edulis[J]. Bulletin of Agricultural Science and Technology, 2009, 38(6):165-166. ] | |
[14] | 杨富玲, 石杨, 李斌, 等. 植物根系分泌物在污染及沙化土壤修复中的应用现状与前景[J]. 应用生态学报, 2021, 32(7):2623-2632. |
[ Yang Fuling, Shi Yang, Li Bin, et al. Application status and prospects of plant root exudates in the remediation of polluted and desertified soil[J]. Chinese Journal of Applied Ecology, 2021, 32(7):2623-2632. ] | |
[15] | 秦杰, 姜昕, 周晶, 等. 长期不同施肥黑土细菌和古菌群落结构及主效影响因子分析[J]. 植物营养与肥料学报, 2015, 21(6):1590-1598. |
[ Qin Jie, Jiang Xin, Zhou Jing, et al. Analysis of bacterial and archaeal community structure and main influencing factors of long-term different fertilization in black soil[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(6):1590-1598. ] | |
[16] | 鲍士旦. 土壤农化分析[M]. 第三版. 北京: 中国农业出版社, 2000. |
[ Bao Shidan. Soil Agrochemical Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000. ] | |
[17] | 李金彦. 土壤水解性氮的测定(碱解扩散法)[J]. 农业科技与信息, 2010, 27(10):15. |
[ Li Jinyan. Determination of soil hydrolyzable nitrogen (alkaline diffusion method)[J]. Agricultural Science and Technology and Information, 2010, 27(10):15. ] | |
[18] | 沈志群, 张琪, 刘琳娟, 等. 碳酸氢钠浸提——钼锑抗分光光度法测定土壤中的有效磷[J]. 环境监控与预警, 2011, 3(5):12-15. |
[ Shen Zhiqun, Zhang Qi, Liu Linjuan, et al. Sodium bicarbonate extraction-molybdenum antimony spectrophotometric method for determination of available phosphorus in soil[J]. Environmental Monitoring and Early Warning, 2011, 3(5):12-15. ] | |
[19] | 陈立人. 火焰光度法测钾[J]. 上海农业科技, 1981, 11(4):38-39. |
[ Chen Liren. Determination of potassium by flame photometry[J]. Shanghai Agricultural Science and Technology, 1981, 11(4):38-39. ] | |
[20] | 谢细香. 重铬酸钾稀释热比色法测定土壤有机质的研究[J]. 安徽农业科学, 2005, 33(6):998-999. |
[ Xie Xixiang. Study on the determination of soil organic matter by potassium dichromate dilution thermal colorimetry[J]. Journal of Anhui Agricultural Sciences, 2005, 33(6):998-999. ] | |
[21] | 谭福雷. 长期定位施肥对设施番茄土壤理化性质、微生物、产量及品质的影响[D]. 沈阳: 沈阳农业大学, 2016. |
[ Tan Fulei. The Effect of Long-term Located Fertilization on the Physical and Chemical Properties, Microorganisms, Yield and Quality of Greenhouse Tomato Soil[D]. Shenyang: Shenyang Agricultural University, 2016. ] | |
[22] | 蒋静, 翟登攀, 张超波. 灌溉施肥水平对盐渍化农田水盐分布及玉米产量的影响[J]. 应用生态学报, 2019, 30(4):1207-1217. |
[ Jiang Jing, Zhai Dengpan, Zhang Chaobo. Effects of irrigation and fertilization levels on water-salt distribution and corn yield in saline farmland[J]. Chinese Journal of Applied Ecology, 2019, 30(4):1207-1217. ] | |
[23] | 肖兴翠, 李志辉, 张志兰, 等. 施肥对湿地松中龄林生长及土壤的影响[J]. 中国农学通报, 2015, 31(16):2386-2393. |
[ Xiao Xingcui, Li Zhihui, Zhang Zhilan, et al. Effects of fertilization on the growth and soil of middle-aged slash pine forest[J]. Chinese Agricultural Science Bulletin, 2015, 31(16):2386-2393. ] | |
[24] | 李廷轩, 张锡洲, 王昌全, 等. 保护地土壤次生盐渍化的研究进展[J]. 西南农业学报, 2001, 20(14):103-107. |
[ Li Tingxuan, Zhang Xizhou, Wang Changquan, et al. Research progress on secondary salinization of protected soil[J]. Northwest Agricultural Journal, 2001, 20(14):103-107. ] | |
[25] | 唐继伟, 徐久凯, 温延臣, 等. 长期单施有机肥和化肥对土壤养分和小麦产量的影响[J]. 植物营养与肥料学报, 2019, 25(11):1827-1834. |
[ Tang Jiwei, Xu Jiukai, Wen Yanchen, et al. Effects of long-term single application of organic fertilizer and chemical fertilizer on soil nutrients and wheat yield[J]. Journal of Plant Nutrition and Fertilizer, 2019, 25(11):1827-1834. ] | |
[26] | 霍晨, 李丽君, 邹慧芳, 等. 减水减肥对温室西葫芦产量及土壤养分的影响[J]. 山西农业科学, 2020, 48(3):426-435. |
[ Huo Chen, Li Lijun, Zou Huifang, et al. The effect of water reduction and weight loss on the yield of greenhouse zucchini and soil nutrients[J]. Shanxi Agricultural Sciences, 2020, 48(3):426-435. ] | |
[27] | 李志龙, 罗超越, 邱慧珍, 等. 连续施氮对马铃薯根际细菌群落结构及反硝化作用的影响[J]. 草业学报, 2020, 29(6):105-116. |
[ Li Zhilong, Luo Chaoyue, Qiu Huizhen, et al. Effects of continuous nitrogen application on potato rhizosphere bacterial community structure and denitrification[J]. Acta Prataculturae Sinica, 2020, 29(6):105-116. ] | |
[28] |
Zhang C, Song Z, Zhuang D, et al. Urea fertilization decreases soil bacterial diversity, but improves microbial biomass, respiration, and N-cycling potential in a semiarid grassland[J]. Biology and Fertility of Soils, 2019, 55(3):229-242.
doi: 10.1007/s00374-019-01344-z |
[29] | 丁建莉, 姜昕, 马鸣超, 等. 长期有机无机肥配施对东北黑土真菌群落结构的影响[J]. 植物营养与肥料学报, 2017, 23(4):914-923. |
[ Ding Jianli, Jiang Xin, Ma Mingchao, et al. Effects of long-term combined application of organic and inorganic fertilizers on fungal community structure in black soils in Northeast China[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(4):914-923. ] | |
[30] | 魏欣. 中国农业面源污染管控研究[D]. 杨凌: 西北农林科技大学, 2014. |
[ Wei Xin. Research on Agricultural Non-point Source Pollution Control in China[D]. Yangling: Northwest A & F University, 2014. ] | |
[31] | 倪添. 稻麦轮作体系下不同施肥措施对土壤微生物区系的影响[D]. 南京: 南京农业大学, 2013. |
[ Ni Tian. Effects of Different Fertilization Measures on Soil Microbial Flora under Rice-Wheat Rotation System[D]. Nanjing: Nanjing Agricultural University, 2013. ] | |
[32] | 赵晓楠, 李玉红, 芦阿虔, 等. 有机肥不同施肥量对茶园土壤微生物区系的影响[J]. 江苏农业科学, 2018, 46(24):311-314. |
[ Zhao Xiaonan, Li Yuhong, Lu Aqian, et al. The effects of different amounts of organic fertilizer on the soil microbial flora of tea gardens[J]. Jiangsu Agricultural Sciences, 2018, 46(24):311-314. ] | |
[33] | 林洪鑫, 袁展汽, 肖运萍, 等. 施氮和木薯间作对成熟期花生根际土壤细菌群落结构的影响[J]. 中国油料作物学报, 2020, 183(5):15-25. |
[ Lin Hongxin, Yuan Zhanqi, Xiao Yunping, et al. Effects of nitrogen application and cassava intercropping on the bacterial community structure of peanut rhizosphere soil during ripening period[J]. Chinese Journal of Oil Crops, 2020, 183(5):15-25. ] | |
[34] | 陈凤, 王晓双, 甘国渝, 等. 长期施用磷肥对稻-油轮作土壤磷组分及微生物多样性的影响[J]. 华中农业大学学报, 2021, 40(1):168-178. |
[ Chen Feng, Wang Xiaoshuang, Gan Guoyu, et al. Effects of long-term application of phosphate fertilizers on soil phosphorus components and microbial diversity in rice-oil rotation[J]. Journal of Huazhong Agricultural University, 2021, 40(1):168-178. ] | |
[35] |
Xun W, Xiong W, Huang T, et al. Swine manure and quicklime have different impacts on chemical properties and composition of bacterial communities of an acidic soil[J]. Applied Soil Ecology, 2016, 100:38-44.
doi: 10.1016/j.apsoil.2015.12.003 |
[36] | 薛晓敏, 王来平, 韩雪平, 等. 不同树盘覆盖对矮砧苹果园土壤微生物群落结构和多样性的影响[J]. 生态学报, 2021, 41(4):1528-1536. |
[ Xue Xiaomin, Wang Laiping, Han Xueping, et al. Effects of different tree cover on the structure and diversity of soil microbial communities in apple orchards on short stocks[J]. Acta Ecologica Sinica, 2021, 41(4):1528-1536. ] | |
[37] |
Adams M, Xie J X, Xie J W, et al. The effect of carrier addition on anammox start-up and microbial community: A review[J]. Reviews in Environmental Science and Bio/Technology, 2020, 19(2):355-368.
doi: 10.1007/s11157-020-09530-4 |
[38] | 张洋. 不同施肥条件下黄瓜连作土壤微生物多样性分析[D]. 扬州: 扬州大学, 2016. |
[ Zhang Yang. Analysis of Soil Microbial Diversity in Continuous Cucumber Cropping under Different Fertilization Conditions[D]. Yangzhou: Yangzhou University, 2016. ] | |
[39] | 聂三安, 赵丽霞, 王祎, 等. 长期施肥对黄泥田土壤微生物群落结构和多样性的影响[J]. 农业现代化研究, 2018, 39(4):689-699. |
[ Nie San’an, Zhao Lixia, Wang Yi, et al. Effects of long-term fertilization on soil microbial community structure and diversity in yellow mud fields[J]. Research of Agricultural Modernization, 2018, 39(4):689-699. ] | |
[40] | 费裕翀, 黄樱, 张筱, 等. 不同有机肥处理对紫色土油茶林土壤微生物群落结构的影响[J]. 应用与环境生物学报, 2020, 26(4):919-927. |
[ Fei Yuchong, Huang Ying, Zhang Xiao, et al. Effects of different organic fertilizer treatments on the soil microbial community structure in the purple-soil Camellia oleifera forest[J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(4):919-927. ] | |
[41] |
Frey S D, Knorr M, Parrent J L, et al. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests[J]. Forest Ecology and Management, 2004, 196(1):159-171.
doi: 10.1016/j.foreco.2004.03.018 |
[42] |
Liu J, Sui Y, Yu Z, et al. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China[J]. Soil Biology and Biochemistry, 2014, 70:113-122.
doi: 10.1016/j.soilbio.2013.12.014 |
[43] |
Ring E, Hongbom L, Jansson G. Effects of previous nitrogen fertilization on soil-solution chemistry after final felling and soil scarification at two nitrogen-limited forest sites[J]. Canadian Journal of Forest Research, 2013, 43(4):396-404.
doi: 10.1139/cjfr-2012-0380 |
[44] | 刘洋, 黄懿梅, 曾全超. 黄土高原不同植被类型下土壤细菌群落特征研究[J]. 环境科学, 2016, 37(10):3931-3938. |
[ Liu Yang, Huang Yimei, Zeng Quanchao. Characteristics of soil bacterial communities under different vegetation types on the Loess Plateau[J]. Environmental Science, 2016, 37(10):3931-3938. ] | |
[45] | 苏永中, 杨荣, 杨晓, 等. 不同土壤条件下节水灌溉对棉花产量和灌溉水生产力的影响[J]. 土壤学报, 2014, 51(6):1192-1201. |
[ Su Yongzhong, Yang Rong, Yang Xiao, et al. Effects of water-saving irrigation on cotton yield and irrigation water productivity under different soil conditions[J]. Acta Pedologica Sinica, 2014, 51(6):1192-1201. ] | |
[46] | 曹婷婷, 师晨迪. 不同植物根系对土质边坡土壤理化性质影响研究[J]. 农业与技术, 2020, 40(21):9-11. |
[ Cao Tingting, Shi Chendi. The effect of different plant root systems on the physical and chemical properties of soil slopes[J]. Agriculture & Technology, 2020, 40(21):9-11. ] |
[1] | 孙琳琳, 刘琼, 黄观, 陈勇航, 魏鑫, 郭玉琳, 张太西, 高天一, 许赟红. 新疆和周边“一带一路”地区不同云天条件下地表太阳辐射[J]. 干旱区研究, 2024, 41(9): 1480-1490. |
[2] | 崔国龙, 李强峰, 高英, 刘维军, 张梅. 青海大通北川河源区典型植被土壤微生物群落结构特征及影响因素[J]. 干旱区研究, 2024, 41(7): 1195-1206. |
[3] | 菅政博, 罗浩, 单娜娜. “双碳”目标下新疆“三生”空间时空演变特征及碳效应[J]. 干旱区研究, 2024, 41(7): 1238-1248. |
[4] | 柳华清, 王博, 贾妍妍, 解欣然, 张维. 新疆西天山峡谷不同坡位野核桃冻害特征[J]. 干旱区研究, 2024, 41(6): 1079-1088. |
[5] | 马元植, 覃小林, 凌红波, 闫俊杰, 张广朋. 1991—2020年新疆中小湖泊面积变化时空特征及趋势分析[J]. 干旱区研究, 2024, 41(6): 905-916. |
[6] | 张皓哲, 薛亚永, 马圆圆, 薛国玄. 新疆绿洲生态系统固碳潜力研究[J]. 干旱区研究, 2024, 41(6): 998-1009. |
[7] | 白事麟, 吕雅雅, 师小军. 不同生境和基质对经过牛消化道的新疆野苹果种子萌发和幼苗生长的影响[J]. 干旱区研究, 2024, 41(5): 821-829. |
[8] | 许超杰, 窦燕, 孟琪琳. 基于EMD-GWO-LSTM模型的新疆标准化降水蒸散指数预测方法研究[J]. 干旱区研究, 2024, 41(4): 527-539. |
[9] | 司琪, 樊浩然, 董文明, 刘新平. 新疆叶尔羌河流域景观生态风险评价及预测[J]. 干旱区研究, 2024, 41(4): 684-696. |
[10] | 包佳玉, 李祥龙, 胡启文, 李涛. 新疆能源消费碳排放时空特征及能源结构调整路径探讨[J]. 干旱区研究, 2024, 41(3): 490-498. |
[11] | 姚俊强. 新疆空中水资源和地表水资源变化特征研究[J]. 干旱区研究, 2024, 41(2): 181-190. |
[12] | 吴明江, 邱娟, 郑凤, 凌孝波, 王新宇, 杨洋, 杨佳鑫, 刘立强. 新疆野果林灌木物种多样性与生态位研究[J]. 干旱区研究, 2024, 41(12): 2094-2109. |
[13] | 张健, 张宏祥. 新疆野苹果叶绿体基因组特征及其进化历史[J]. 干旱区研究, 2024, 41(12): 2110-2119. |
[14] | 许赟红, 刘琼, 陈勇航, 魏鑫, 刘鑫, 张太西, 邵伟玲, 杨何群, 张丞铭. 新疆及周边中亚地区土地覆盖变化对地表反照率的影响[J]. 干旱区研究, 2024, 41(10): 1649-1661. |
[15] | 金晨阳, 杜宏茹. 新疆耕地系统韧性时空变化特征及其分区划定[J]. 干旱区研究, 2024, 41(10): 1778-1788. |
|