干旱区研究 ›› 2025, Vol. 42 ›› Issue (2): 274-288.doi: 10.13866/j.azr.2025.02.08 cstr: 32277.14.AZR.20250208
张佳凝1(), 张建军1,2(
), 赖宗锐1, 赵炯昌1, 胡亚伟1, 李阳1, 卫朝阳1
收稿日期:
2024-06-07
修回日期:
2024-11-21
出版日期:
2025-02-15
发布日期:
2025-02-21
通讯作者:
张建军. E-mail: zhangjianjun@bjfu.edu.cn作者简介:
张佳凝(2000-),女,硕士研究生,主要从事林业生态工程研究. E-mail: alcreed@163.com
基金资助:
ZHANG Jianing1(), ZHANG Jianjun1,2(
), LAI Zongrui1, ZHAO Jiongchang1, HU Yawei1, LI Yang1, WEI Chaoyang1
Received:
2024-06-07
Revised:
2024-11-21
Published:
2025-02-15
Online:
2025-02-21
摘要:
土壤养分水平和微生物群落结构特征是评估人工林生态系统服务功能的重要指标。为探究干旱半干旱地区人工林林分密度对土壤养分与微生物群落的影响,以黄土高原东缘30 a生刺槐(Robinia pseudoacacia)人工林为研究对象,基于Reineke林分密度效应法则和区域管理标准,将林分划分为低密度(950~1350株·hm-2)、中密度(1600~2050株·hm-2)和高密度(2400~3300株·hm-2)组。通过野外调查、土壤养分测定及16S rRNA和ITS高通量测序,系统分析了林分密度对土壤养分、微生物群落及其生态互作关系的影响,对于优化人工林密度和实现可持续经营具有重要意义。结果表明:土壤全氮、硝态氮、全碳和有机碳含量随林分密度增加而提高,尤其在高密度组中差异显著(P<0.05);有效磷含量则在中密度组达到峰值。细菌群落主要由变形菌门(38.70%)、放线菌门(19.37%)、芽单胞菌门(8.23%)和绿弯菌门(7.71%)构成,其中高密度组放线菌门的相对丰度显著高于低密度组(P<0.05);在真菌群落中,子囊菌门(51.79%)、被孢霉门(30.70%)和担子菌门(10.07%)为优势菌门。高密度组细菌和真菌群落多样性显著增强,Shannon指数和Chao1指数均显著提高(P<0.05)。PCoA分析显示,中、低密度组的细菌群落结构呈现聚集性,并与高密度组存在显著差异(P<0.05);真菌群落结构在不同密度组间未表现出显著差异。Mantel检验表明,细菌和真菌群落结构均与土壤全氮显著相关(P<0.05)。共现网络分析显示,适度提高林分密度能够增强微生物群落的互作强度与复杂性,当林分密度超过2400株·hm-2时,网络稳定性下降,不利于资源高效利用。综上所述,林分密度处于1600~2050株·hm-2时,能够有效提高土壤养分水平,并优化微生物群落结构,从而为黄土高原刺槐人工林的生态系统管理与可持续经营提供科学依据。
张佳凝, 张建军, 赖宗锐, 赵炯昌, 胡亚伟, 李阳, 卫朝阳. 林分密度对刺槐人工林土壤养分和微生物群落的影响[J]. 干旱区研究, 2025, 42(2): 274-288.
ZHANG Jianing, ZHANG Jianjun, LAI Zongrui, ZHAO Jiongchang, HU Yawei, LI Yang, WEI Chaoyang. Effects of stand density on soil nutrients and microbial communities in Robinia pseudoacacia plantations[J]. Arid Zone Research, 2025, 42(2): 274-288.
表1
不同林分密度组人工林样地概况"
分组 | 林分密度 /(株·hm-2) | 海拔 /m | 坡位 | 坡向 | 平均 坡度/(°) | 平均 树高/m | 平均 胸径/cm | 平均 地径/cm | 平均水 平冠幅/m | 平均顺 坡冠幅/m | 主要林 下植被 |
---|---|---|---|---|---|---|---|---|---|---|---|
低密度 | 1218.75±141.89 | 1133.49±42.05 | 中坡 | 阳坡 | 23.31±4.91 | 10.53±1.07 | 13.12±2.13 | 16.93±1.98 | 4.03±0.22 | 4.76±0.39 | 茅莓、青杞、黄刺玫、铁 杆蒿 |
中密度 | 1893.75±135.46 | 1102.90±43.57 | 中坡 | 阳坡 | 24.00±7.65 | 8.89±1.09 | 9.93±1.22 | 13.77±1.46 | 3.67±0.27 | 4.04±0.35 | 虉草、黑麦草、茅莓、青蒿、白首乌 |
高密度 | 2723.25±297.09 | 1098.41±36.26 | 中坡 | 阳坡 | 21.13±15.43 | 7.11±1.35 | 8.30±1.04 | 11.63±1.30 | 3.19±0.32 | 3.85±0.62 | 虉草、茅莓、青蒿、铁杆蒿、蒌蒿、黄刺玫、茜草 |
表2
不同林分密度人工林土壤养分含量(均值 ± 标准误差,n=样本量)"
分组 | 全氮/(g·kg-1) | 铵态氮/(mg·kg-1) | 硝态氮/(mg·kg-1) | 全碳/(g·kg-1) | 有机碳/(g·kg-1) | 全磷/(g·kg-1) | 有效磷/(mg·kg-1) |
---|---|---|---|---|---|---|---|
低密度组(n=40) | 0.65±0.17b | 10.05±2.39a | 9.01±3.66b | 23.44±3.00b | 5.34±1.33b | 0.56±0.04a | 1.64±0.61b |
中密度组(n=40) | 0.80±0.34ab | 10.10±2.63a | 11.14±3.21ab | 23.91±2.03ab | 5.41±1.62b | 0.55±0.04a | 2.99±1.02a |
高密度组(n=40) | 1.10±0.38a | 10.27±3.00a | 15.43±7.25a | 28.32±5.39a | 8.01±1.38a | 0.53±0.06a | 2.53±0.87ab |
表3
不同林分密度组人工林土壤微生物共现网络拓扑参数"
网络拓扑参数 | 细菌 | 真菌 | |||||
---|---|---|---|---|---|---|---|
低密度 | 中密度 | 高密度 | 低密度 | 中密度 | 高密度 | ||
节点数 | 434 | 450 | 536 | 126 | 111 | 189 | |
边数 | 609 | 698 | 1239 | 197 | 142 | 294 | |
正相关数 | 606 | 696 | 1234 | 197 | 142 | 294 | |
负相关数 | 3 | 2 | 5 | 0 | 0 | 0 | |
平均度 | 2.81 | 3.10 | 4.62 | 3.13 | 2.56 | 3.11 | |
平均路径长度 | 1.04 | 1.02 | 1.06 | 1.24 | 1.14 | 1.22 | |
网络直径 | 2.98 | 1.99 | 1.99 | 1.98 | 1.98 | 3.97 | |
网络密度 | 0.01 | 0.01 | 0.01 | 0.03 | 0.02 | 0.02 | |
聚类系数 | 0.99 | 0.99 | 0.99 | 0.9 | 0.94 | 0.94 |
[1] | 张璐, 吕楠, 程临海. 干旱区生态系统稳态转换及其预警信号——基于景观格局特征的识别方法[J]. 生态学报, 2023, 43(15): 6486-6498. |
[Zhang Lu, Lü Nan, Cheng Linhai. Regime shifts and early warning signals in dryland ecosystems—an identification method based on landscape pattern characteristics[J]. Acta Ecologica Sinica, 2023, 43(15): 6486-6498. ] | |
[2] |
于贵瑞, 郝天象, 杨萌. 中国区域生态恢复和环境治理的生态系统原理及若干学术问题[J]. 应用生态学报, 2023, 34(2): 289-304.
doi: 10.13287/j.1001-9332.202302.030 |
[Yu Guirui, Hao Tianxiang, Yang Meng. Ecosystem principles and main issues in regional ecological restoration and environmental governance in China[J]. Chinese Journal of Applied Ecology, 2023, 34(2): 289-304. ]
doi: 10.13287/j.1001-9332.202302.030 |
|
[3] | Kou M, Jiao J Y. Changes in vegetation and soil properties across 12 years after afforestation in the hilly-gully region of the Loess Plateau[J]. Global Ecology and Conservation, 2021, 33(6): e01989. |
[4] | Wang Y X, Dong G, Qu L P, et al. Ecosystem functioning of the Loess Plateau in China from vegetation restoration relied largely on climate[J]. Forests, 2023, 14(1): 27. |
[5] | 姜俊, 陈长启, 陈贝贝, 等. 林分密度对北京石质山地侧柏人工林碳氮磷化学计量和养分再吸收的影响[J]. 北京林业大学学报, 2024, 46(10): 33-41. |
[Jiang Jun, Chen Changqi, Chen Beibei, et al. Effects of stand density on carbon, nitrogen, and phosphorus stoichiometry and nutrient resorption in Platycladus orientalis plantations in rocky mountainous areas of Beijing[J]. Journal of Beijing Forestry University, 2024, 46(10): 33-41. ] | |
[6] |
王思淇, 张建军, 张彦勤, 等. 晋西黄土区不同密度刺槐林下植物群落物种多样性[J]. 干旱区研究, 2023, 40(7): 1141-1151.
doi: 10.13866/j.azr.2023.07.11 |
[Wang Siqi, Zhang Jianjun, Zhang Yanqin, et al. Understory plant community diversity of Robinia pseudoacacia plantation with different densities in the loess plateau of western Shanxi Province[J]. Arid Zone Research, 2023, 40(7): 1141-1151. ]
doi: 10.13866/j.azr.2023.07.11 |
|
[7] | 江上喜. 造林密度对6年生杉木幼林生长及林下光环境的影响[J]. 亚热带农业研究, 2022, 18(4): 223-228. |
[Jiang Shangxi. Effects of density on growth and understory light environment of 6-year-old Chinese fir plantation[J]. Subtropical Agriculture Research, 2022, 18(4): 223-228. ] | |
[8] |
吉吉佳门, 程一本, 谌玲珑, 等. 科尔沁沙地樟子松人工林土壤水分动态及其对降雨的响应[J]. 干旱区研究, 2023, 40(5): 756-766.
doi: 10.13866/j.azr.2023.05.08 |
[Jijijiamen, Cheng Yiben, Chen Linglong, et al. Dynamic changes in soil moisture and its response to rainfall in Pinus sylvestris var. mongolica plantation in Horqin Sandy Land[J]. Arid Zone Research, 2023, 40(5): 756-766. ] | |
[9] | 崔艳红, 毕华兴, 侯贵荣, 等. 晋西黄土残塬沟壑区刺槐林土壤入渗特征及影响因素分析[J]. 北京林业大学学报, 2021, 43(1): 77-87. |
[Cui Yanhong, Bi Huaxing, Hou Guirong, et al. Soil infiltration characteristics and influencing factors of Robinia pseudoacacia plantation in the loess gully region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2021, 43(1): 77-87. ] | |
[10] | 韦景树, 李宗善, 冯晓玙, 等. 黄土高原人工刺槐林生长衰退的生态生理机制[J]. 应用生态学报, 2018, 29(7): 2433-2444. |
[Wei Jingshu, Li Zongshan, Feng Xiaoyu, et al. Ecological and physiological mechanisms of growth decline of Robinia pseudoacacia plantations in the Loess Plateau of China: A review[J]. Chinese Journal of Applied Ecology, 2018, 29(7): 2433-2444. ] | |
[11] | 丛微. 典型森林土壤微生物群落及其与植物的共存关系研究[D]. 北京: 中国林业科学研究院, 2020. |
[Cong Wei. Study on the Soil Microbial Community and Coexistence with Plants of Typical Forest[D]. Beijing: Chinese Academy of Forestry, 2020. ] | |
[12] | 王岩松, 马保明, 高海平, 等. 晋西黄土区油松和刺槐人工林土壤养分及其化学计量比对林分密度的响应[J]. 北京林业大学学报, 2020, 42(8): 81-93. |
[Wang Yansong, Ma Baoming, Gao Haiping, et al. Response of soil nutrients and their stoichiometric ratios to stand density in Pinus tabuliformis and Robinia pseudoacacia plantations in the loess region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2020, 42(8): 81-93. ] | |
[13] | 胡亚伟, 施政乐, 刘畅, 等. 晋西黄土区刺槐林密度对林下植物多样性及土壤理化性质的影响[J]. 生态学杂志, 2023, 42(9): 2072-2080. |
[Hu Yawei, Shi Zhengle, Liu Chang, et al. Effects of stand densities on understory vegetation diversity and soil physicochemical properties of Robinia pseudoacacia forest in loess region of western Shanxi Province[J]. Chinese Journal of Ecology, 2023, 42(9): 2072-2080. ] | |
[14] | 黄浩博, 毕华兴, 赵丹阳, 等. 黄土高原不同密度刺槐林地土壤-微生物-胞外酶生态化学计量特征[J/OL]. 生态学报, 2025, (03): 1-11. |
[Huang Haobo, Bi Huaxing, Zhao Danyang, et al. Ecological stoichiometry of soil, microbial biomass, and extracellular enzyme in Robinia pseudoacacia with different stand densities in the Loess Plateau[J/OL]. Acta Ecologica Sinica, 2025, (03): 1-11. ] | |
[15] | Zhao M, Sun Y R, Liu S H, et al. Effects of stand density on the structure of soil microbial functional groups in Robinia pseudoacacia plantations in the hilly and gully region of the Loess Plateau, China[J]. Science of the Total Environment, 2024, 912: 169337. |
[16] | 常译方. 晋西黄土区典型林地土壤水分特征及模拟[D]. 北京: 北京林业大学, 2018. |
[Chang Yifang. Soil Moisture Characteristics and Simulation in Typical Forestlands in Loess Region of Western Shanxi Province[D]. Beijing: Beijing Forestry University, 2018. ] | |
[17] | 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000. |
[Bao Shidan. Soil Agrochemical Analysis[M]. Beijing: China Agricultural Press, 2000. ] | |
[18] | Callahan B, McMurdie P, Holmes S. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis[J]. The ISME Journal, 2017, 11(12): 2639-2643. |
[19] |
Tedersoo L, Tooming-Klunderud A, Anslan S. PacBio metabarcoding of fungi and other eukaryotes: Embracing full-length amplicons and completeness[J]. New Phytologist, 2018, 217(3): 1370-1385.
doi: 10.1111/nph.14776 pmid: 28906012 |
[20] | 贾亚倢, 杨建英, 张建军, 等. 晋西黄土区林分密度对油松人工林生物量及土壤理化性质的影响[J]. 浙江农林大学学报, 2024, 41(6): 1211-1221. |
[Jia Yajie, Yang Jianying, Zhang Jianjun, et al. Effects of stand density on biomass and soil physico-chemical properties of Pinus tabuliformis forest in the loess area of western Shanxi[J]. Journal of Zhejiang A & F University, 2024, 41(6): 1211-1221. ] | |
[21] |
崔国龙, 李强峰, 高英, 等. 青海大通北川河源区典型植被土壤微生物群落结构特征及影响因素[J]. 干旱区研究, 2024, 41(7): 1195-1206.
doi: 10.13866/j.azr.2024.07.11 |
[Cui Guolong, Li Qiangfeng, Gao Ying, et al. Characteristics of soil microbial communities structure and influencing factors in typical vegetation in the Beichuan River source area of Datong, Qinghai[J]. Arid Zone Research, 2024, 41(7): 1195-1206. ]
doi: 10.13866/j.azr.2024.07.11 |
|
[22] | 仲怡铭, 陈徵尼, 王慧慧, 等. 油松人工林林分特征对密度调控的响应[J]. 森林与环境学报, 2023, 43(6): 606-613. |
[Zhong Yiming, Chen Zhengni, Wang Huihui, et al. Responses of stand characteristics of Pinus tabuliformis plantation to density regulation[J]. Journal of Forest and Environment, 2023, 43(6): 606-613. ] | |
[23] | Zeng X H, Zhang W J, Cao J S, et al. Changes in soil organic carbon, nitrogen, phosphorus, and bulk density after afforestation of the “Beijing-Tianjin Sandstorm Source Control” program in China[J]. Catena, 2014, 118: 186-194. |
[24] | Shi S W, Peng C H, Wang M, et al. A global meta-analysis of changes in soil carbon, nitrogen, phosphorus, and sulfur, and stoichiometric shifts after forestation[J]. Plant and Soil, 2016, 407: 323-340. |
[25] | 张宁宁, 黄诗浩, 雷衡, 等. 基于137Cs 示踪技术的土壤侵蚀及养分流失特征评价[J]. 生态学报, 2022, 42(22): 9274-9283. |
[Zhang Ningning, Huang Shihao, Lei Heng, et al. Assessment of soil erosion and nutrient loss characteristics based on 137Cs tracer technique[J]. Acta Ecologica Sinica, 2022, 42(22): 9274-9283. ] | |
[26] | 王梓名, 赵明明, 任云卯, 等. 主伐龄油松建筑材林生长及土壤性质对林分密度的响应[J]. 北京林业大学学报, 2022, 44(12): 88-101. |
[Wang Ziming, Zhao Mingming, Ren Yunmao, et al. Response of growth and soil properties of Chinese pine building timber forest atfelling age to stand density[J]. Journal of Beijing Forestry University, 2022, 44(12): 88-101. ] | |
[27] | 付志高, 肖以华, 许涵, 等. 南亚热带常绿阔叶林土壤微生物生物量碳氮年际动态特征及其影响因子[J]. 生态学报, 2024, 44(3): 1092-1103. |
[Fu Zhigao, Xiao Yihua, Xu Han, et al. Inter-annual dynamics of soil microbial biomass carbon and nitrogen in subtropical evergreen broad-leaved forest and its environmental impact factors[J]. Acta Ecologica Sinica, 2024, 44(3): 1092-1103. ] | |
[28] | Fang X M, Zhang X L, Zong Y Y, et al. Soil phosphorus functional fractions and tree tissue nutrient concentrations influenced by stand density in subtropical Chinese fir plantation forests[J]. Plos One, 2017, 12(10): e0186905. |
[29] | 王晓, 毕银丽, 王义, 等. 沙棘林密度和丛枝菌根真菌接种对林下植物和土壤性状的影响[J]. 林业科学, 2023, 59(10): 138-149. |
[Wang Xiao, Bi Yinli, Wang Yi, et al. Effects of planting density of Hippophae rhamnoides and inoculation of AMF on understory vegetation growth and soil improvement[J]. Scientia Silvae Sinicae, 2023, 59(10): 138-149. ] | |
[30] | 刘少华, 赵敏, 王亚娟, 等. 黄土丘陵区林分密度对人工刺槐林土壤理化性质及酶活性影响[J]. 水土保持研究, 2024, 31(5): 123-129. |
[Liu Shaohua, Zhao Min, Wang Yajuan, et al. Effects of stand density on soil physicochemical properties and enzyme activities in Robinia pseudoacacia plantations in the Loess hilly-gully region[J]. Research of Soil and Water Conservation, 2024, 31(5): 123-129. ] | |
[31] | Guo J, Wu Y Q, Wu X H, et al. Soil bacterial community composition and diversity response to land conversion is depth-dependent[J]. Global Ecology and Conservation, 2021, 32: e01923. |
[32] |
张颂安, 刘轩, 赵珮杉, 等. 呼伦贝尔沙地樟子松人工林土壤细菌网络特征[J]. 干旱区研究, 2023, 40(6): 905-915.
doi: 10.13866/j.azr.2023.06.06 |
[Zhang Songan, Liu Xuan, Zhao Peishan, et al. Soil bacterial networks in Pinus sylvestris var. mongolica plantationsof the Hulunbuir Desert[J]. Arid Zone Research, 2023, 40(6): 905-915. ]
doi: 10.13866/j.azr.2023.06.06 |
|
[33] | Zhao F Z, Fan X D, Ren C J, et al. Changes of the organic carbon content and stability of soil aggregates affected by soil bacterial community after afforestation[J]. Catena, 2018, 171: 622-631. |
[34] | Deng J J, Zhang Y, Yin Y, et al. Comparison of soil bacterial community and functional characteristics following afforestation in the semi-arid areas[J]. PeerJ, 2019, 7: e7141. |
[35] | Zuo Y W, Li W Q, Zeng Y L, et al. Changes in the soil microenvironment during ecological restoration of forest parks in megacities[J]. Ecological Indicators, 2024, 66: 112261. |
[36] | 刘炜璇, 李依蒙, 江红星, 等. 吉林莫莫格国家级自然保护区四种典型植物群落下土壤微生物组成的对比分析[J]. 生态学杂志, 2024, 43(10): 2988-2998. |
[Liu Weixuan, Li Yimeng, Jiang Hongxing, et al. Comparative analysis of soil microbial composition of four typical plant communities in Momoge National Nature Reserve, Jilin Province[J]. Chinese Journal of Ecology, 2024, 43(10): 2988-2998. ]
doi: 10.13292/j.1000-4890.202410.040 |
|
[37] | Zhai K T, Hua Y C, Liang J W, et al. Soil microbial diversity under different types of interference in birch secondary forest in the Greater Khingan Mountains in China[J]. Frontiers in Microbiology, 2023, 14: 1267746. |
[38] | 钟超, 任媛媛, 鲁安怀, 等. 低能量环境中微生物生存策略[J]. 微生物学报, 2024, 64(12): 4480-4503. |
[Zhong Chao, Ren Yuanyuan, Lu Anhuai, et al. Survival strategies of microorganisms in low-energy environments[J]. Acta Microbiologica Sinica, 2024, 64(12): 4480-4503. ] | |
[39] | Xu M P, Wang J Y, Zhu Y F, et al. Plant biomass and soil nutrients mainly explain the variation of soil microbial communities during secondary succession on the Loess Plateau[J]. Microbial Ecology, 2022, 83(3): 114-126. |
[40] | Song Y H, Zhai J Y, Zhang J Y, et al. Forest management practices of Pinus tabulaeformis plantations alter soil organic carbon stability by adjusting microbial characteristics on the Loess Plateau of China[J]. Science of The Total Environment, 2021, 766: 144209. |
[41] | 罗佳煜, 宋瑞清, 邓勋, 等. PGPR与外生菌根菌互作对樟子松促生作用及根际微生态环境的影响[J]. 中南林业科技大学学报, 2021, 41(9): 22-34. |
[Luo Jiayu, Song Ruiqing, Deng Xun, et al. PGPR interacts with ectomycorrhizal fungi to promote growth of Pinus sylvestnis var. mongolica and to effect of rhizosphere microecological environmen[J]. Journal of Central South University of Forestry & Technology, 2021, 41(9): 22-34. ] | |
[42] |
李丹丹, 李佳文, 高广磊, 等. 科尔沁沙地樟子松(Pinus sylvestris var. mongolica)人工林土壤真菌群落结构和功能特征[J]. 中国沙漠, 2023, 43(4): 241-251.
doi: 10.7522/j.issn.1000-694X.2023.00035 |
[Li Dandan, Li Jiawen, Gao Guanglei, et al. Soil fungal community structure and functional characteristics associated with Pinus sylvestris var. mongolica plantations in the Horqin Sandy Land[J]. Journal of Desert Research, 2023, 43(4): 241-251. ]
doi: 10.7522/j.issn.1000-694X.2023.00035 |
|
[43] |
Xue Y Y, Chen H H, Yang J R, et al. Distinct patterns and processes of abundant and rare eukaryotic plankton communities following a reservoir cyanobacterial bloom[J]. ISME Journal, 2018, 12(9): 2263-2277.
doi: 10.1038/s41396-018-0159-0 pmid: 29899512 |
[44] | Li W T, Liu Q H, Xie L L, et al. Interspecific plant-plant interactions increase the soil microbial network stability, shift keystone microbial taxa, and enhance their functions in mixed stands[J]. Forest Ecology and Management, 2023, 533: 120851. |
[45] | Creamer R, Hannula S, van Leeuwen J, et al. Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe[J]. Applied Soil Ecology, 2016, 97: 112-124. |
[46] | Zarafshar M, Vincent G, Korboulewsky N, et al. The impact of stand composition and tree density on topsoil characteristics and soil microbial activities[J]. Catena, 2024, 234: 107541. |
[47] | Chen J, Feng K, Hannula S E, et al. Interkingdom plant-microbial ecological networks under selective and clear cutting of tropical rainforest[J]. Forest Ecology and Management, 2021, 491: 119182. |
[48] | Wang C, Shi Z Y, Li A G, et al. Long-term nitrogen input reduces soil bacterial network complexity by shifts in life-history strategy in temperate grassland[J]. iMeta, 2024, 3(3): e194. |
[49] | Yang T, Tedersoo L, Liu X, et al. Fungi stabilize multi-kingdom community in a high elevation timberline ecosystem[J]. iMeta, 2022, 1(4): e49. |
[50] | Li C C, Jin L, Zhang C, et al. Destabilized microbial networks with distinct performances of abundant and rare biospheres in maintaining networks under increasing salinity stress[J]. iMeta, 2023, 2(1): e79. |
[51] |
Gong H Y, Wang H X, Wang Y, et al. Topological change of soil microbiota networks for forest resilience under global warming[J]. Physics of Life Reviews, 2024, 50: 228-251.
doi: 10.1016/j.plrev.2024.08.001 pmid: 39178631 |
[52] | 吴文超, 岳平, 崔晓庆, 等. 古尔班通古特沙漠土壤微生物碳氮对环境因子的响应[J]. 干旱区研究, 2018, 35(3): 515-523. |
[Wu Wenchao, Yue Ping, Cui Xiaoqing, et al. Response of soil microbial biomass carbon and nitrogen deposition to precipitation and temperature in the Gurbantunggut Desert[J]. Arid Zone Research, 2018, 35(3): 515-523. ] | |
[53] | Wang J Q, Shi X Z, Zheng C Y, et al. Different responses of soil bacterial and fungal communities to nitrogen deposition in a subtropical forest[J]. Science of the Total Environment, 2021, 755(1): 142449. |
[54] |
张彤, 刘静, 韩叙, 等. 放牧对沙地樟子松林土壤养分及微生物群落的影响[J]. 干旱区研究, 2023, 40(2): 194-202.
doi: 10.13866/j.azr.2023.02.04 |
[Zhang Tong, Liu Jing, Han Xu, et al. Effects of grazing on soil nutrients and microbial community of Pinus sylvestris var. mongolica forest in sandy land[J]. Arid Zone Research, 2023, 40(2): 194-202. ] | |
[55] | Chen Y C, Yin S W, Shao Y, et al. Soil bacteria are more sensitive than fungi in response to nitrogen and phosphorus enrichment[J]. Frontiers in Microbiology, 2022, 13: 999385. |
[56] | Chen X, Hao B H, Jing X, et al. Minor responses of soil microbial biomass, community structure and enzyme activities to nitrogen and phosphorus addition in three grassland ecosystems[J]. Plant and Soil, 2019, 444: 21-37. |
[57] | 张韶阳, 樊丹丹, 孔维栋. 增温对干旱区土壤微生物多样性及固碳功能的影响[J]. 生态学杂志, 2024, 43(6): 1817-1823. |
[Zhang Shaoyang, Fan Dandan, Kong Weidong. Effects of warming on soil microbial diversity and carbon sequestration function in drylands[J]. Chinese Journal of Ecology, 2024, 43(6): 1817-1823. ] | |
[58] | 张蕾, 王强, 杨新月, 等. 黄土丘陵区退耕还林对土壤真菌群落的影响[J]. 环境科学, 2023, 44(3): 1758-1767. |
[Zhang Lei, Wang Qiang, Yang Xinyue, et al. Effect of the process of returning farmland to forest in the Loess Hilly area on soil fungal communities[J]. Environmental Science, 2023, 44(3): 1758-1767. ] | |
[59] | Haas J C, Street N R, Sjödin A, et al. Microbial community response to growing season and plant nutrient optimisation in a boreal Norway spruce forest[J]. Soil Biology and Biochemistry, 2018, 125: 197-209. |
[1] | 崔国龙, 李强峰, 高英, 刘维军, 张梅. 青海大通北川河源区典型植被土壤微生物群落结构特征及影响因素[J]. 干旱区研究, 2024, 41(7): 1195-1206. |
[2] | 安宁, 郭彬, 张东梅, 杨淇越, 罗维成. 河西走廊中段荒漠植被组成及土壤养分空间分布特征[J]. 干旱区研究, 2024, 41(3): 432-443. |
[3] | 张久丹, 张爱国, 靳镜宇, 刘帅琪, 吴瀚, 李均力. 哈密市戈壁表层土壤理化性质及质量现状[J]. 干旱区研究, 2024, 41(11): 1864-1874. |
[4] | 梁元也, 范连连, 马学喜, 毛洁菲, 惠婷婷, 李耀明. 新疆北部六种草地类型土壤碳氮磷生态化学计量特征[J]. 干旱区研究, 2024, 41(10): 1708-1718. |
[5] | 曹秭琦, 路战远, 任永峰, 赵小庆, 王建国, 侯智慧, 韩云飞, 王登云, 尚学燕, 段锐. 不同施氮水平对油莎豆农田土壤养分表观平衡和块茎产量的影响[J]. 干旱区研究, 2024, 41(1): 71-79. |
[6] | 王思淇, 张建军, 张彦勤, 赵炯昌, 胡亚伟, 李阳, 唐鹏, 卫朝阳. 晋西黄土区不同密度刺槐林下植物群落物种多样性[J]. 干旱区研究, 2023, 40(7): 1141-1151. |
[7] | 张彤, 刘静, 韩叙, 童郁强, 魏亚伟. 放牧对沙地樟子松林土壤养分及微生物群落的影响[J]. 干旱区研究, 2023, 40(2): 194-202. |
[8] | 回嵘, 谭会娟, 黄磊, 李新荣. 柴达木盆地盐渍化土壤养分和酶活性特征[J]. 干旱区研究, 2023, 40(11): 1776-1784. |
[9] | 孟娜, 张颖. 山西省林地扩展优先区识别[J]. 干旱区研究, 2023, 40(1): 111-122. |
[10] | 牟红霞,刘秉儒,李子豪,李国旗,麻冬梅. 矿井水对荒漠草原土壤微生物群落结构及多样性的影响[J]. 干旱区研究, 2022, 39(5): 1618-1630. |
[11] | 谢明君,李广,马维伟,刘帅楠,常海刚,杜佳囝,丁宁. 水分对河西青贮玉米土壤化学计量比及稳态性的影响[J]. 干旱区研究, 2022, 39(4): 1312-1321. |
[12] | 侍世玲,任晓萌,张晓伟,蒙仲举,王涛. 库布齐沙漠沙枣防护林土壤养分及化学计量特征[J]. 干旱区研究, 2022, 39(2): 469-476. |
[13] | 何超禄,吕海深,朱永华,李文韬,谢冰绮,徐凯莉,刘名文. TIGGE降水预报在中国干旱半干旱地区的适用性评估[J]. 干旱区研究, 2022, 39(2): 368-378. |
[14] | 徐接亮,张凤华,李变变,王家平,程志博. 施肥对油莎豆根际微生物群落特性的影响[J]. 干旱区研究, 2021, 38(6): 1741-1749. |
[15] | 娄泊远,王永东,闫晋升,艾柯代·艾斯凯尔. 亚寒带荒漠草原不同树种人工林土壤生态化学计量特征[J]. 干旱区研究, 2021, 38(5): 1385-1392. |
|