干旱区研究 ›› 2022, Vol. 39 ›› Issue (2): 419-428.doi: 10.13866/j.azr.2022.02.09
收稿日期:
2021-09-10
修回日期:
2021-11-20
出版日期:
2022-03-15
发布日期:
2022-03-30
通讯作者:
周金龙
作者简介:
白凡(1994-),男,硕士研究生,主要从事干旱区地下水资源评价与保护方面的研究. E-mail: 基金资助:
BAI Fan1,2,3(),ZHOU Jinlong1,2,3(
),ZENG Yanyan1,2,3
Received:
2021-09-10
Revised:
2021-11-20
Online:
2022-03-15
Published:
2022-03-30
Contact:
Jinlong ZHOU
摘要:
为研究吐鲁番盆地平原区地下水水化学特征及水质状况,根据吐鲁番地区2015年(最近1次)全面的地下水污染调查数据,选取44组地下水水质检测数据(潜水33组,承压水11组),运用数理统计、Piper三线图、Gibbs图、离子比值法对研究区地下水水化学特征及成因进行分析,运用内梅罗指数法、改进内梅罗指数法和模糊综合评价法对研究区地下水质量进行评价。结果表明:(1) 吐鲁番盆地平原区地下水主要为低矿化度的弱碱性水,水化学类型以SO4·Cl-Na·Ca型和HCO3·SO4-Na·Ca型为主,其次为HCO3·SO4·Cl-Na·Ca型;研究区水化学成分主要受蒸发浓缩和岩石风化共同作用的影响。(2) 地下水中的Ca2+、Mg2+主要来自蒸发岩的溶解,Na+、K+、Cl-主要来自岩盐的溶解,少量潜水中的Na+和K+来自硅酸盐的溶解。(3) γ(Na+-Cl-)/γ[(Ca2++Mg2+)-γ(SO42-+HCO3-)=-1,呈显著负相关,说明地下水化学组分的形成受到了阳离子交换作用的影响。(4) 水质评价结果显示:3种评价方法中的Ⅲ类及以上水质占比均高于55%,地下水质量整体较好;模糊综合评价法的Ⅳ、Ⅴ类水占比最低为27.3%,Ⅳ、Ⅴ类水主要分布在托克逊县的博斯坦乡和鄯善县以东的火车站镇和七克台镇。
白凡,周金龙,曾妍妍. 吐鲁番盆地平原区地下水水化学特征及水质评价[J]. 干旱区研究, 2022, 39(2): 419-428.
BAI Fan,ZHOU Jinlong,ZENG Yanyan. Hydrochemical characteristics and quality of groundwater in the plains of the Turpan Basin[J]. Arid Zone Research, 2022, 39(2): 419-428.
表1
地下水水化学成分特征值"
类型 | 统计值 | pH | TH | TDS | K+ | Na+ | Mg2+ | Ca2+ | Cl- | | |
---|---|---|---|---|---|---|---|---|---|---|---|
潜水 (n=33) | 最小值/(mg·L-1) | 7.51 | 60.00 | 248.80 | 0.60 | 20.30 | 1.90 | 20.80 | 21.30 | 48.00 | 76.30 |
最大值/(mg·L-1) | 8.22 | 2482.00 | 6616.60 | 17.80 | 1440.00 | 212.60 | 713.40 | 2446.00 | 2526.40 | 384.40 | |
平均值/(mg·L-1) | 7.93 | 519.59 | 1226.40 | 3.87 | 213.32 | 39.25 | 143.35 | 311.22 | 398.88 | 147.20 | |
标准差/(mg·L-1) | 0.17 | 532.60 | 1457.46 | 3.43 | 312.08 | 43.94 | 145.46 | 481.10 | 503.29 | 75.92 | |
变异系数/% | 0.02 | 1.02 | 1.19 | 0.89 | 1.46 | 1.12 | 1.01 | 1.55 | 1.26 | 0.52 | |
承压水 (n=11) | 最小值/(mg·L-1) | 7.87 | 80.10 | 209.80 | 0.60 | 11.40 | 2.40 | 22.00 | 11.30 | 40.30 | 54.90 |
最大值/(mg·L-1) | 8.38 | 680.50 | 1067.20 | 2.60 | 130.60 | 48.60 | 192.40 | 322.60 | 440.00 | 180.00 | |
平均值/(mg·L-1) | 8.09 | 250.56 | 509.44 | 1.65 | 68.13 | 19.65 | 67.95 | 85.78 | 170.45 | 120.76 | |
标准差/(mg·L-1) | 0.16 | 168.21 | 264.40 | 0.58 | 38.04 | 14.28 | 49.79 | 80.72 | 120.91 | 40.18 | |
变异系数/% | 0.02 | 0.67 | 0.52 | 0.35 | 0.56 | 0.73 | 0.73 | 0.94 | 0.71 | 0.33 |
表4
模糊综合评价法的评价结果"
类型 | 等级 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | 监测点 |
---|---|---|---|---|---|---|---|
潜水 | Ⅰ | 0.6594 | 0.3091 | 0.0314 | 0.0000 | 0.0000 | D1 |
潜水 | Ⅰ | 0.7093 | 0.2712 | 0.0196 | 0.0000 | 0.0000 | D10 |
潜水 | Ⅰ | 0.6815 | 0.3005 | 0.0180 | 0.0000 | 0.0000 | D18 |
潜水 | Ⅰ | 0.5984 | 0.3854 | 0.0162 | 0.0000 | 0.0000 | D20 |
潜水 | Ⅰ | 0.7159 | 0.2664 | 0.0177 | 0.0000 | 0.0000 | D29 |
潜水 | Ⅰ | 0.7377 | 0.2443 | 0.0179 | 0.0000 | 0.0000 | D32 |
潜水 | Ⅰ | 0.6077 | 0.3772 | 0.0151 | 0.0000 | 0.0000 | D33 |
潜水 | Ⅰ | 0.6129 | 0.3730 | 0.0141 | 0.0000 | 0.0000 | D34 |
潜水 | Ⅰ | 0.7895 | 0.1869 | 0.0237 | 0.0000 | 0.0000 | D42 |
潜水 | Ⅱ | 0.1710 | 0.6956 | 0.1335 | 0.0000 | 0.0000 | D13 |
潜水 | Ⅱ | 0.4583 | 0.5276 | 0.0141 | 0.0000 | 0.0000 | D23 |
潜水 | Ⅱ | 0.1021 | 0.4532 | 0.4447 | 0.0000 | 0.0000 | D25 |
潜水 | Ⅱ | 0.2525 | 0.7229 | 0.0246 | 0.0000 | 0.0000 | D26 |
潜水 | Ⅱ | 0.1634 | 0.4882 | 0.3437 | 0.0047 | 0.0000 | D30 |
潜水 | Ⅱ | 0.4598 | 0.5279 | 0.0123 | 0.0000 | 0.0000 | D31 |
潜水 | Ⅱ | 0.2583 | 0.5294 | 0.2122 | 0.0000 | 0.0000 | D40 |
潜水 | Ⅱ | 0.3092 | 0.6705 | 0.0203 | 0.0000 | 0.0000 | D44 |
潜水 | Ⅲ | 0.0323 | 0.1781 | 0.4347 | 0.0138 | 0.3411 | D16 |
潜水 | Ⅲ | 0.0174 | 0.1018 | 0.4311 | 0.1560 | 0.2938 | D37 |
潜水 | Ⅲ | 0.0426 | 0.0985 | 0.6129 | 0.2459 | 0.0000 | D38 |
潜水 | Ⅲ | 0.0460 | 0.2140 | 0.3617 | 0.0889 | 0.2893 | D39 |
潜水 | Ⅲ | 0.0142 | 0.0924 | 0.3893 | 0.1603 | 0.3438 | D43 |
潜水 | Ⅴ | 0.0223 | 0.0697 | 0.2896 | 0.3060 | 0.3124 | D11 |
潜水 | Ⅴ | 0.1533 | 0.2263 | 0.2717 | 0.0307 | 0.3179 | D17 |
潜水 | Ⅴ | 0.1273 | 0.1386 | 0.2396 | 0.1263 | 0.3683 | D19 |
潜水 | Ⅴ | 0.0072 | 0.0072 | 0.0010 | 0.0000 | 0.9847 | D21 |
潜水 | Ⅴ | 0.0145 | 0.0704 | 0.1200 | 0.0999 | 0.6952 | D22 |
潜水 | Ⅴ | 0.0126 | 0.0226 | 0.1409 | 0.2321 | 0.5918 | D24 |
潜水 | Ⅴ | 0.0184 | 0.0187 | 0.0527 | 0.0559 | 0.8543 | D27 |
潜水 | Ⅴ | 0.0538 | 0.0945 | 0.1059 | 0.0485 | 0.6973 | D28 |
潜水 | Ⅴ | 0.0182 | 0.1576 | 0.2734 | 0.2483 | 0.3025 | D35 |
潜水 | Ⅴ | 0.0034 | 0.0203 | 0.0039 | 0.0000 | 0.9725 | D36 |
潜水 | Ⅴ | 0.0141 | 0.0568 | 0.1672 | 0.1290 | 0.6328 | D41 |
承压水 | Ⅰ | 0.7083 | 0.2663 | 0.0254 | 0.0000 | 0.0000 | D2 |
承压水 | Ⅰ | 0.8152 | 0.1637 | 0.0211 | 0.0000 | 0.0000 | D5 |
承压水 | Ⅰ | 0.6379 | 0.3084 | 0.0537 | 0.0000 | 0.0000 | D7 |
承压水 | Ⅰ | 0.7628 | 0.2155 | 0.0217 | 0.0000 | 0.0000 | D15 |
承压水 | Ⅱ | 0.2328 | 0.4969 | 0.2704 | 0.0000 | 0.0000 | D3 |
承压水 | Ⅱ | 0.3664 | 0.5302 | 0.1034 | 0.0000 | 0.0000 | D6 |
承压水 | Ⅱ | 0.3502 | 0.4860 | 0.1638 | 0.0000 | 0.0000 | D8 |
承压水 | Ⅱ | 0.3439 | 0.5246 | 0.1314 | 0.0000 | 0.0000 | D9 |
承压水 | Ⅱ | 0.4216 | 0.5551 | 0.0233 | 0.0000 | 0.0000 | D14 |
承压水 | Ⅳ | 0.0724 | 0.0927 | 0.2748 | 0.4856 | 0.0744 | D4 |
承压水 | Ⅴ | 0.1623 | 0.1330 | 0.3034 | 0.0268 | 0.3744 | D12 |
[1] | 胡汝骥, 樊自立, 王亚俊, 等. 中国西北干旱区的地下水资源及其特征[J]. 自然资源学报, 2002, 17(3):321-326. |
[ Hu Ruji, Fan Zili, Wang Yajun, et al. Groundwater resources and their characteristics in arid lands of Northwest China[J]. Journal of Natural Resources, 2002, 17(3):321-326. ] | |
[2] | 蔺悦霞. 吐鲁番市2020年地下资源评价分析[J]. 陕西水利, 2020(11):47-49. |
[ Lin Yuexia. Evaluation and analysis of underground resources in Turpan in 2020[J]. Shaanxi Water Resources, 2020(11):47-49. ] | |
[3] | 商佐, 唐蕴, 杨姗姗. 近30年吐鲁番盆地地下水动态特征及影响因素分析[J]. 中国水利水电科学研究院学报, 2020, 18(3):192-203. |
[ Shang Zuo, Tang Yun, Yang Shanshan. Analysis of groundwater dynamic characteristics and influencing factors in Turpan Basin in recent 30 years[J]. Journal of China Institute of Water Resources and Hydropower Research, 2020, 18(3):192-203. ] | |
[4] | 纪媛媛, 周金龙, 孙英, 等. 新疆昌吉市平原区地下水化学特征及质量评价[J]. 南水北调与水利科技, 2021, 19(3):551-560. |
[ Ji Yuanyuan, Zhou Jinlong, Sun Ying, et al. Groundwater Chemical characteristics and water quality evaluation for groundwater in plain area of Changji City, Xinjiang[J]. South-to-North Water Transfers and Water Science and Technology, 2021, 19(3):551-560. ] | |
[5] | 姜体胜, 曲辞晓, 王明玉, 等. 北京平谷平原区浅层地下水化学特征及成因分析[J]. 干旱区资源与环境, 2017, 31(11):122-127. |
[ Jiang Tisheng, Qu Cixiao, Wang Mingyu, et al. Hydrochemical characteristics and of shallow groundwater and the origin in Pinggu plain, Beijing[J]. Journal of Arid land Resources and Environment, 2017, 31(11):122-127. ] | |
[6] | 王礼恒, 董艳辉, 宋凡, 等. 甘肃石油河流域地下水补给来源与演化特征分析[J]. 干旱区地理, 2017, 40(1):54-61. |
[ Wang Liheng, Dong Yanhui, Song Fan, et al. Recharge sources and hydrochemical properties of groundwater in the Shiyou River, Gansu Province[J]. Arid Land Geography, 2017, 40(1):54-61. ] | |
[7] | 竹娜, 胡伏生, 张强, 等. 吐鲁番盆地地下水化学分析[J]. 地下水, 2015, 37(5):25-28, 32. |
[ Zhu Na, Hu Fusheng, Zhang Qiang, et al. Chemical analysis of groundwater in Turpan Basin[J]. Ground Water, 2015, 37(5):25-28, 32. ] | |
[8] | 蒋万军, 赵丹, 王广才, 等. 新疆吐-哈盆地地下水水文地球化学特征及形成作用[J]. 现代地质, 2016, 30(4):825-833. |
[ Jiang Wanjun, Zhao Dan, Wang Guangcai, et al. Hydrogeochemical characteristics and formation of groundwater in Tu-Ha Basin, Xinjiang[J]. Geoscience, 2016, 30(4):825-833. ] | |
[9] | 杨广焱, 李巧, 周金龙. 新疆吐鲁番地区地下水质量与污染评价[J]. 节水灌溉, 2014(2):29-32. |
[ Yang Guangyan, Li Qiao, Zhou Jinlong. Evaluation of groundwater quality and the pollution in Xinjiang Turpan area[J]. Water Saving Irrigation, 2014(2):29-32. ] | |
[10] | 袁月. 吐鲁番盆地地下水功能区划分析[D]. 北京: 中国地质大学, 2020. |
[ Yuan Yue. Analysis of Functional Area Division of Groundwater in Turpan Basin[D]. Beijing: China University of Geosciences, 2020. ] | |
[11] | 董新光, 邓铭江. 新疆地下水资源[M]. 乌鲁木齐: 新疆科学技术出版社, 2005. |
[ Dong Xinguang, Deng Mingjiang. Groundwater Resources in Xinjiang[M]. Urumqi: Xinjiang Science and Technology Press, 2005. ] | |
[12] | 商佐. 吐鲁番盆地地下水动态特征及控制性水位分析[D]. 北京: 中国地质大学, 2020. |
[ Shang Zuo. Analysis of Groundwater Dynamic Characteristics and Controlling Water Level in Turpan Basin[D]. Beijing: China University of Geosciences, 2020. ] | |
[13] | 吴豪. 吐鲁番盆地地下水水化学演化特征研究[D]. 乌鲁木齐:新疆农业大学, 2018. |
[ Wu Hao. Study on the Groundwater Chemical Evolution in Turpan Basin[D]. Urumqi: Xinjiang Agricultural University, 2018. ] | |
[14] | DZ/T 0288-2015 Z/T 0288-2015. 中华人们共和国地质矿产行业标准:区域地下水污染调查评价规范[S]. 北京: 地质出版社, 2015. |
[DZ/T 0288-2015 Z/T 0288-2015. Industry Standard of Geology and Mineral Resources of the People’s Republic of China: Specification for Regional Groundwater Contamination Investigation and Evaluation[S]. Beijing: Geology Press, 2015. ] | |
[15] | HJ/T 164-2020 J/T 164-2020. 中华人民共和国国家环境保护标准:地下水环境监测技术规范[S]. 北京: 中国环境科学出版社, 2020. |
[HJ/T 164-2020 J/T 164-2020. National Environmental Protection Standard of the People’s Republic of China: Technical Specifications for Environmental Monitoring of Groundwater[S]. Beijing: China Environmental Science Press, 2020. ] | |
[16] | 曾小仙, 曾妍妍, 周金龙, 等. 石河子市浅层地下水化学特征及其成因分析[J]. 干旱区研究, 2021, 38(1):68-75. |
[ Zeng Xiaoxian, Zeng Yanyan, Zhou Jinlong, et al. Hydrochemical characteristics and cause analysis of the shallow groundwater in Shihezi City[J]. Arid Zone Research, 2021, 38(1):68-75. ] | |
[17] | 邢丽娜. 华北平原典型剖面上地下水化学特征和水文地球化学过程[D]. 北京: 中国地质大学, 2012. |
[ Xing Lina. Groundwater Hydrochemical Characteristics and Hydrogeochemical Processes Approximately along Flow Paths of Groundwater in the North China Plain[D]. Beijing: China University of Geosciences, 2012. ] | |
[18] | 栾风娇, 周金龙, 贾瑞亮, 等. 新疆巴里坤-伊吾盆地地下水水化学特征及成因[J]. 环境化学, 2017, 36(2):380-389. |
[ Luan Fengjiao, Zhou Jinlong, Jia Ruiliang, et al. Hydrochemical characteristics and formation mechanism of groundwater in plain areas of Barkol-Yiwu Basin, Xinjiang[J]. Environmental Chemistry, 2017, 36(2):380-389. ] | |
[19] | 安乐生, 赵全升, 叶思源, 等. 黄河三角洲浅层地下水化学特征及形成作用[J]. 环境科学, 2012, 33(2):370-378. |
[ An Lesheng, Zhao Quansheng, Ye Siyuan, et al. Hydrochemical characteristics and formation mechanism of groundwater in the Yellow River Delta[J]. Environmental Science, 2012, 33(2):370-378. ] | |
[20] | 李小等. 青海省诺木洪地区地下水化学特征及演化规律[D]. 西安: 长安大学, 2012. |
[ Li Xiaodeng. Study on the Froundwater Chemistry Evolution of Nuomuhong Area in Qinghai Province[D]. Xi’an: Chang’an University, 2012. ] | |
[21] | 赵江涛. 新疆焉耆盆地平原区地下水化学特征及演化研究[D]. 乌鲁木齐: 新疆农业大学, 2016. |
[ Zhao Jiangtao. Hydrochemical Characteristics and Evolution of Groundwater in Plain Area of Yanqi Basin, Xinjiang[D]. Urumqi: Xinjiang Agricultural University, 2016. ] | |
[22] | GB/T 14848-2017 B/T 14848-2017. 中华人民共和国国家标准:地下水质量标准[S]. 北京: 中国标准出版社, 2017. |
[GB/T 14848-2017 B/T 14848-2017. National Standard of the People’s Republic of China: Standard for Groundwater Quality[S]. Beijing: China Standard Press, 2017. ] | |
[23] | 倪天翔. 应用于地下水质评价的模糊综合评判法及其优化[J]. 地下水, 2021, 43(1):17-19. |
[ Ni Tianxiang. Optimization and application of fuzzy comprehensive evaluation method in groundwater quality evaluation[J]. Ground Water, 2021, 43(1):17-19. ] | |
[24] | 吕梦华. 模糊综合评价法在人工湖水质评价中的应用——以郑州大学眉湖为例[J]. 科技致富向导, 2014(23):259-260. |
[ Lyu Menghua. Application of fuzzy comprehensive evaluation method in water quality evaluation of artificial lake: Taking Mei Lake of Zhengzhou university as an example[J]. Technology Rich Guide, 2014(23):259-260. ] | |
[25] | 傅周燕. 新疆淖毛湖盆地地下水水质评价及水文地球化学模拟[D]. 北京: 中国地质大学, 2014. |
[ Fu Zhouyan. Evaluation of Groundwater Quality and Hydrogeochemical Simulation in Nuomaohu Basin of Xinjiang[D]. Beijing: China University of Geosciences, 2014. ] | |
[26] | 程敏, 姜纪沂, 任杰, 等. 察布查尔县地区地下水水化学特征及地下水水质评价[J]. 科学技术与工程, 2020, 20(2):527-534. |
[ Cheng Min, Jiang Jiyi, Ren Jie, et al. Groundwater hydrochemical characteristics and groundwater quality evaluation in Qapqal County area[J]. Science Technology and Engineering, 2020, 20(2):527-534. ] |
[1] | 阮永健,吴秀芹. 基于GRACE和GLDAS的西北干旱区地下水资源量可持续性评价[J]. 干旱区研究, 2022, 39(3): 787-800. |
[2] | 崔佳琪,李仙岳,史海滨,孙亚楠,马红雨,菅文浩. 节水改造前后永济灌域地下水环境时空变化特征[J]. 干旱区研究, 2022, 39(3): 841-852. |
[3] | 苏春利,纪倩楠,陶彦臻,谢先军,潘洪捷. 河套灌区西部土壤盐渍化分异特征及其主控因素[J]. 干旱区研究, 2022, 39(3): 916-923. |
[4] | 丁启振,雷米,周金龙,张杰,徐东升. 博尔塔拉河上游河谷地区水化学特征及水质评价[J]. 干旱区研究, 2022, 39(3): 829-840. |
[5] | 李平平,王晓丹,陈海龙. 苏干湖湿地与奎屯诺尔湿地之间水力联系研究[J]. 干旱区研究, 2022, 39(2): 429-435. |
[6] | 刘磊,陈军锋,吕棚棚,赵德星,杜琦. 冻融作用下地下水浅埋区土壤盐分及离子变化特征[J]. 干旱区研究, 2022, 39(2): 448-455. |
[7] | 时雯雯,周金龙,曾妍妍,孙英. 和田地区地下水中氟的分布特征及形成过程[J]. 干旱区研究, 2022, 39(1): 155-164. |
[8] | 张文琦,董少刚,马铭言,赵镇,陈悦. 岱海盆地地下水化学特征及成因[J]. 干旱区研究, 2021, 38(6): 1546-1555. |
[9] | 刘璐,陈亚鹏,李肖杨. 生态输水对孔雀河地下水埋深及植被的影响[J]. 干旱区研究, 2021, 38(4): 901-909. |
[10] | 玛尔胡拜·牙生,马龙,吉力力·阿不都外力,张伟燕. 新疆天山西段夏季河流水化学特征及其影响因素研究[J]. 干旱区研究, 2021, 38(3): 600-609. |
[11] | 艾力哈木·艾克拉木,周金龙,张杰,魏兴,余东,陈劲松. 伊犁河谷西北部地下水化学特征及成因分析[J]. 干旱区研究, 2021, 38(2): 504-512. |
[12] | 王京晶,刘鹄,徐宗学,王思佳. 基于昼夜水位波动法估算地下水蒸散发量的研究——以河西走廊典型绿洲为例[J]. 干旱区研究, 2021, 38(1): 59-67. |
[13] | 曾小仙,曾妍妍,周金龙,雷米,孙英. 石河子市浅层地下水化学特征及其成因分析[J]. 干旱区研究, 2021, 38(1): 68-75. |
[14] | 张圆浩, 阿拉木萨, 印家旺, 蒋绍妍. 沙丘土壤含水量与地下水埋深时空变化特征[J]. 干旱区研究, 2020, 37(6): 1427-1436. |
[15] | 张文佳, 王乃昂, 于昕冉, 牛震敏, 赵力强. 基于地下水动态和经验模型的巴丹吉林沙漠潜水蒸发量级——以苏木吉林湖区为例[J]. 干旱区研究, 2020, 37(5): 1215-1222. |
|