[1] |
Liang W, Bai D, Wang F, et al. Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China’s Loess Plateau[J]. Water Resources Research, 2015, 51(8):6500-6519.
doi: 10.1002/2014WR016589
|
[2] |
Huntington T. Evidence for intensification of the global water cycle: Review and synjournal[J]. Journal of Hydrology, 2006, 319(1):83-95.
doi: 10.1016/j.jhydrol.2005.07.003
|
[3] |
Yu L, Josey S, Bingham F, et al. Intensification of the global water cycle and evidence from ocean salinity: A synjournal review[J]. Annals of the New York Academy of Sciences, 2020, 1472(1):76-94.
doi: 10.1111/nyas.v1472.1
|
[4] |
Wang K, Dickinson R. A Review of Global Terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability[J]. Reviews of Geophysics, 2012, 50(2):1-54.
|
[5] |
Katul G, Oren R, Manzoni S, et al. Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system[J]. Reviews of Geophysics, 2012, 50: RG3002.
|
[6] |
Peng L, Li D, Sheffield J. Drivers of variability in atmospheric evaporative demand: Multiscale spectral analysis based on observations and physically based modeling[J]. Water Resources Research, 2018, 54(5):3510-3529.
doi: 10.1029/2017WR022104
|
[7] |
Jiang Z, Yang Z, Zhang S, et al. Revealing the spatio-temporal variability of evapotranspiration and its components based on an improved Shuttleworth-Wallace model in the Yellow River Basin[J]. Journal of Environmental Management, 2020, 262:110310.
doi: 10.1016/j.jenvman.2020.110310
|
[8] |
Zeng Z, Peng L, Piao S. Response of terrestrial evapotranspiration to Earth’s greening[J]. Current Opinion in Environmental Sustainability, 2018, 33:9-25.
doi: 10.1016/j.cosust.2018.03.001
|
[9] |
孟莹, 姜鹏, 方缘. 大气水分亏缺对中国两种典型草地生态系统总初级生产力的影响[J]. 生态学杂志, 2020, 39(11):3633-3642.
|
|
[ Meng Ying, Jiang Peng, Fang Yuan. Contrasting impacts of vapor pressure deficit on gross primary productivity of temperate steppe in Inner Mongolia and alpine shrub-meadow in China[J]. Chinese Journal of Ecology, 2020, 39(11):3633-3642. ]
|
[10] |
Novick K, Ficklin D, Stoy P, et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes[J]. Nature Climate Change, 2016, 6(11):1023-1027.
doi: 10.1038/nclimate3114
|
[11] |
Ponce-campos G, Moran M, Huete A, et al. Ecosystem resilience despite large-scale altered hydroclimatic conditions[J]. Nature, 2013, 494(7437):349-352.
doi: 10.1038/nature11836
|
[12] |
申露婷, 张方敏, 黄进, 等. 1961—2018年内蒙古生长季昼夜降水气候特征[J]. 干旱区研究, 2020, 37(6):1519-1527.
|
|
[ Shen Luting, Zhang Fangmin, Huang Jin, et al. Climate characteristics of day and night precipitation during the growing season in Inner Mongolia from 1961 to 2018[J]. Arid Zone Research, 2020, 37(6):1519-1527. ]
|
[13] |
Zhao M, Geruo A, Zhang J, et al. Ecological restoration impact on total terrestrial water storage[J]. Nature Sustainability, 2020, 4:56-62.
doi: 10.1038/s41893-020-00600-7
|
[14] |
马爱华, 岳大鹏, 赵景波, 等. 近60 a来内蒙古极端降水时空变化及其影响[J]. 干旱区研究, 2020, 37(1):74-85.
|
|
[ Ma Aihua, Yue Dapeng, Zhao Jingbo, et al. Spatiotemporal variation and effect of extreme precipitation in Inner Mongolia in recent 60 years[J]. Arid Zone Research, 2020, 37(1):74-85. ]
|
[15] |
张巧凤, 刘桂香, 于红博, 等. 基于MOD16A2的锡林郭勒草原近14年的蒸散发时空动态[J]. 草地学报, 2016, 24(2):286-293.
|
|
[ Zhang Qiaofeng, Liu Guixiang, Yu Hongbo, et al. Temporal and spatial dynamic of ET based on MOD16A2 in recent fourteen years in Xilingol steppe[J]. Acta Agrestia Sinica, 2016, 24(2):286-293. ]
|
[16] |
Liu Y, Liu R, Chen J. Retrospective retrieval of long-term consistent global leaf area index (1981-2011) from combined AVHRR and MODIS data[J]. Journal of Geophysical Research, 2012, 117(G4): G04003. https://doi.org/10.1029/2012JG002084.
|
[17] |
张方敏, 居为民, 陈镜明, 等. 基于BEPS生态模型对亚洲东部地区蒸散量的模拟[J]. 自然资源学报, 2010, 25(9):1596-1606.
|
|
[ Zhang Fangmin, Ju Weimin, Chen Jingming, et al. Study on evapotranspiration in East Asia using the BEPS ecological model[J]. Journal of Natural Resources, 2010, 25(9):1596-1606. ]
|
[18] |
陈镜明, 柳竞先, 罗翔中. 基于碳水通量耦合原理改进Penman-Monteith蒸散发模型[J]. 大气科学学报, 2020, 43(1):59-75.
|
|
[ Chen Jingming, Liu Jingxian, Luo Xiangzhong. Improving the penman-monteith evapotranspiration model based on the coupling principle of carbon and water fluxes[J]. Transactions of Atmospheric Sciences, 2020, 43(1):59-75. ]
|
[19] |
韩典辰, 张方敏, 陈吉泉, 等. 半干旱区草地站蒸散特征及其对气象因子和植被的响应[J]. 草地学报, 2021, 29(1):166-173.
|
|
[ Han Dianchen, Zhang Fangmin, Chen Jiquan, et al. Characteristics of grassland evapotranspiration in Semi-Arid Area and its responses to meteorological factors and vegetation[J]. Acta Agrestia Sinica, 2021, 29(1):166-173. ]
|
[20] |
Tian D, Niu S, Pan Q, et al. Nonlinear responses of ecosystem carbon fluxes and water-use efficiency to nitrogen addition in Inner Mongolia grassland[J]. Functional Ecology, 2016, 30(3):490-499.
doi: 10.1111/fec.2016.30.issue-3
|
[21] |
Ran L, Wang S, Fan X. Channel change at Toudaoguai station and its responses to the operation of up-stream reservoirs in the upper Yellow River[J]. Journal of Geographical Sciences, 2010, 20(2):231-247.
doi: 10.1007/s11442-010-0231-9
|
[22] |
Rodionov S. A sequential algorithm for testing climate regime shifts[J]. Geophysical Reseaech Letters, 2004, 31(9):L09204.
|
[23] |
Zhao M, Running S. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009[J]. Science, 2010, 329:940-943.
doi: 10.1126/science.1192666
|
[24] |
王静, 姚顺波, 刘天军. 退耕还林背景下降水利用效率时空演变及驱动力探讨[J]. 农业工程学报, 2020, 36(1):128-137.
|
|
[ Wang Jing, Yao Shunbo, Liu Tianjun. Spatio-temporal evolution and driving forces of rainfall use efficiency in land restoration[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(1):128-137. ]
|
[25] |
张雪松, 闫艺兰, 胡正华. 不同时间尺度农田蒸散影响因子的通径分析[J]. 中国农业气象, 2017, 38(4):201-210.
|
|
[ Zhang Xuesong, Yan Yilan, Hu Zhenghua. Using path analysis to identify impacting factors of evapotranspiration at different time scales in farmland[J]. Chinese Journal of Agrometeorology, 2017, 38(4):201-210. ]
|
[26] |
Grinsted A, Moore J, Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical time series[J]. Nonlinear Process Geophys, 2004, 11(5):561-566.
doi: 10.5194/npg-11-561-2004
|
[27] |
牛忠恩, 胡克梅, 何洪林, 等. 2000-2015年中国陆地生态系统蒸散时空变化及其影响因素[J]. 生态学报, 2019, 39(13):4697-4709.
|
|
[ Niu Zhong’en, Hu Kemei, He Honglin, et al. The spatial-temporal patterns of evapotranspiration and its influencing factors in Chinese terrestrial ecosystem from 2000 to 2015[J]. Acta Ecologica Sinica, 2019, 39(13):4697-4709. ]
|
[28] |
李霞, 刘廷玺, 段利民, 等. 半干旱区沙丘、草甸作物系数模拟及蒸散发估算[J]. 干旱区研究, 2020, 37(5):1246-1255.
|
|
[ Li Xia, Liu Yanxi, Duan Limin, et al. Crop coefficient simulation and evapotranspiration estimation of dune and meadow in a semiarid area[J]. Arid Zone Research, 2020, 37(5):1246-1255. ]
|
[29] |
王思如, 雷慧闽, 段利民, 等. 气候变化对科尔沁沙地蒸散发和植被的影响[J]. 水利学报, 2017, 48(5):535-544, 550.
|
|
[ Wang Siru, Lei Huimin, Duan Limin, et al. Simulated impacts of climate change on evapotranspiration and vegetation in Horqin Sandy Land[J]. Journal of Hydraulic Engineering, 2017, 48(5):535-544, 550. ]
|
[30] |
Zhang N, Liu C. Simulated water fluxes during the growing season in semiarid grassland ecosystems under severe drought conditions[J]. Journal of Hydrology, 2014, 512:69-86.
doi: 10.1016/j.jhydrol.2014.02.056
|
[31] |
Jung M, Ciais P, Seneviratne S, et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply[J]. Nature, 2010, 467(7318):951-954.
doi: 10.1038/nature09396
|
[32] |
郭少宏, 闫新光. “98”内蒙特大洪水灾害成因抗洪经验及防洪工作的探讨[J]. 内蒙古水利, 1999, 20(1):8-10.
|
|
[ Guo Shaohong, Yan Xinguang. Discussion on the reason, resistance experience and prevention work of Inner Mongolia flood disaster in 1998[J]. Inner Mongolia Water Resources, 1999, 20(1):8-10. ]
|
[33] |
Yuan W, Zheng Y, Piao S, et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth[J]. Science Advances, 2019, 5(8): eaax1396.
|
[34] |
Zhou S, Williams A, Berg A, et al. Land-atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity[J]. Proceedings of the National Academy of Sciences, 2019, 116(38):18848-18853.
doi: 10.1073/pnas.1904955116
|
[35] |
Zhang Y, Peña-arancibia J, Mcvicar T, et al. Multi-decadal trends in global terrestrial evapotranspiration and its components[J]. Scientific Reports, 2016, 6(1):19124.
doi: 10.1038/srep19124
|