Arid Zone Research ›› 2022, Vol. 39 ›› Issue (2): 625-637.doi: 10.13866/j.azr.2022.02.29
• Ecology and Environment • Previous Articles Next Articles
ZOU Kaibo1(),ZHANG Yuhu1(),LIU Xiaowei2,XUE Shuhui1,YANG Bowen1,CUI Yanxin1
Received:
2021-05-21
Revised:
2021-08-20
Online:
2022-03-15
Published:
2022-03-30
Contact:
Yuhu ZHANG
E-mail:zou_kaibo@163.com;zhang_yuhu@163.com
ZOU Kaibo,ZHANG Yuhu,LIU Xiaowei,XUE Shuhui,YANG Bowen,CUI Yanxin. Response of agricultural nonpoint source pollution load in the Ulungur River basin under climate change[J].Arid Zone Research, 2022, 39(2): 625-637.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Data required for model construction"
数据类型 | 分辨率 | 年份 | 格式 | 数据来源 | |
---|---|---|---|---|---|
空间数据 | 流域DEM | 30 m | 2009年 | 栅格 | 地理空间数据云( |
土地利用 | 1:250 000 | 2015年 | 栅格 | 清华大学地球系统科学系( | |
土壤类型 | 1:1000 000 | 栅格 | HWSD(世界土壤数据库) | ||
属性数据 | 气象数据 | 1/3°×1/3° | 2008—2018年 | Txt | CMADS V 1.0大气同化驱动数据集( |
土壤属性 | - | - | Excel | HWSD、SPAW | |
水文、水质 | - | - | Excel | 阿勒泰水文局 |
Tab. 3
Soil types in the Ulungur River basin"
土壤类型编号 | 土壤名称 | 面积比例/% | 土壤类型编号 | 土壤名称 | 面积比例/% |
---|---|---|---|---|---|
1 | 简育灰色土 | 1.20 | 18 | 黏化砂性土 | 1.59 |
2 | 简育黑钙土 | 0.51 | 19 | 钙积石膏土 | 3.09 |
3 | 钙积黑钙土 | 5.11 | 20 | 钙积变性土 | 0.48 |
4 | 黏化栗钙土1 | 2.82 | 21 | 石灰性黑土 | 4.25 |
5 | 黏化栗钙土2 | 0.03 | 22 | 潜育黑土 | 0.15 |
6 | 石灰性冲积土 | 1.05 | 23 | 盐化冲积土 | 0.13 |
7 | 简育栗钙土1 | 5.58 | 24 | 松软潜育土 | 0.34 |
8 | 钙积栗钙土1 | 5.60 | 25 | 松软盐土1 | 0.08 |
9 | 钙积栗钙土2 | 0.09 | 26 | 松软盐土2 | 0.19 |
10 | 黏化钙积土1 | 17.43 | 27 | 石膏盐土 | 0.11 |
11 | 黏化钙积土2 | 0.20 | 28 | 钙积盐土 | 0.90 |
12 | 过渡性红砂土 | 4.13 | 29 | 永冻薄层土 | 2.88 |
13 | 干旱土1 | 2.24 | 30 | 饱和薄层土 | 5.84 |
14 | 简育砂性土 | 20.27 | 31 | 水体 | 3.71 |
15 | 冰冻潜育土 | 4.88 | 32 | 简育栗钙土2 | 0.08 |
16 | 干旱土2 | 0.08 | 33 | 永冻雏形土 | 0.01 |
17 | 黏化石膏土 | 4.93 | 34 | 简育钙积土 | 0.02 |
Tab. 4
Soil attribute database related parameters"
参数名称 | 含义 | 注释 |
---|---|---|
NLAYERS | 土壤分层数 | HWSD |
HYDGRP | 土壤水文学分组 | 公式计算 |
SOL_ZMX | 土壤剖面最大根系深度/mm | HWSD |
ANION_EXCL | 阴离子交换孔隙度 | 模型默认值为0.5 |
SOL_CRK | 土壤最大可压缩量 | 模型默认值为0.5, 可选 |
TEXTURE | 土壤层结构 | SPAW计算 |
SOL_Z | 各土壤层底层到土壤表层的深度/mm | HWSD |
SOL_BD | 土壤湿密度/(mg·m-3或g·cm-3) | SPAW计算 |
SOL_AWC | 土壤层有效持水量/mm | SPAW计算 |
SOL_K | 饱和导水率、饱和水力传导系数/(mm·h-1) | SPAW计算 |
SOL_CBN | 土壤层中有机碳含量 | HWSD |
CLAY | 黏土含量(直径<0.002 mm的土壤颗粒) | HWSD |
SILT | 壤土含量(直径0.002~ 0.05 mm的土壤颗粒) | HWSD |
SAND | 砂土含量(直径0.05~2.0 mm的土壤颗粒) | HWSD |
ROCK | 砾石含量(直径>2.0 mm的土壤颗粒) | HWSD |
SOL_ALB | 地表反射率 | 模型默认值0.01 |
USLE_K | USLE方程中土壤侵蚀力因子 | 公式计算 |
SOL_EC | 土壤电导率/(dS·m-1) | 默认为0 |
Tab. 5
Simulated evaluation index of monthly runoff and nutrient substance in Ertai hydrological station"
模拟时段 | 决定系数R2 | 纳什系数Ens | |
---|---|---|---|
径流 | 率定期(2010-05—2016-07) | 0.87 | 0.77 |
验证期(2017-04—2018-07) | 0.85 | 0.76 | |
总氮 | 率定期(2017-04—2017-07) | 0.86 | 0.86 |
验证期(2018-03—2018-07) | 0.85 | 0.87 | |
总磷 | 率定期(2017-04—2017-07) | 0.91 | 0.84 |
验证期(2018-03—2018-07) | 0.83 | 0.78 |
Tab. 6
SWAT model parameter value"
参数名称 | 参数阈值 | 最终取值 | |
---|---|---|---|
径流 | SCS径流曲线系数CN2 | -0.5~0.5 | 0.480 |
主河道曼宁系数CH_N2 | -0.5~1 | -0.411 | |
土壤蒸发补偿系数ESCO | 0~1 | 0.296 | |
最大冠层蓄水量CANMX | 0~100 | 30.650 | |
土壤有效水容量SOL_AWC | 0~1 | 0.939 | |
饱和水力传导系数SOL_K | 0~1 | 0.502 | |
基流退水系数ALPHA_BF | 0.05~24 | 13.450 | |
地下水滞留时间系数GW_DELAY | 0~0.3 | 0.012 | |
积雪温度滞后因子TIMP | -0.5~0.5 | -0.224 | |
土层底部的埋深SOL_Z | 0~500 | 62.750 | |
湿土的反照率SOL_ALB | 0~0.25 | 0.034 | |
地表径流滞后系数SURLAG | 0~0.5 | 0.304 | |
水质(氮循环) | 反硝化指数速率系数CDN | 0~3 | 1.725 |
发生反硝化作用的土壤含水量阈值SDNCO | 0~1 | 0.325 | |
硝酸盐的渗流系数NPERCO | 0~1 | 0.025 | |
泥沙运移中有机氮的富集比ERORGN | 0~5 | 0.125 | |
降雨中的氮浓度RCN | 0~15 | 13.875 | |
NH3生物氧化的速率常数BC1_BSN | 0.1~1 | 0.258 | |
从NO2到NO3的生物氧化速率常数BC2_BSN | 0.2~2 | 1.415 | |
从有机氮到氨基的水解速率常数BC3_BSN | 0.02~0.4 | 0.239 | |
水质(磷循环) | 从有机磷到可溶性磷的腐化速率常数BC4_BSN | 0.01~0.7 | 0.165 |
土层中有机磷的起始浓度SOL_ORGP | 0~100 | 22.500 | |
磷吸收分布参数P_UPDIS | 0~100 | 17.500 | |
磷的土壤分配系数PHOSKD | 100~200 | 122.500 | |
磷的可利用率指数PSP | 0.01~0.70 | 0.614 | |
泥沙运移中有机磷的富集比ERORGP | 0~5 | 0.125 | |
磷渗流系数PPERCO | 10~17.5 | 13.563 |
Tab. 9
Multi-year average total nitrogen and total phosphorus loadings and percentage changes in the basin under different scenarios"
气温变化/℃ | 降水量变化 | ||||
---|---|---|---|---|---|
0% | 10% | 20% | |||
总氮负荷 | 0 | 总氮负荷量/103 t | 10.17 | 11.31 | 12.53 |
总氮变化率/% | 0 | 11.25 | 23.19 | ||
+1 | 总氮负荷量/103 t | 9.98 | 10.98 | 12.15 | |
总氮变化率/% | -1.86 | -7.92 | -19.46 | ||
+2 | 总氮负荷量/103 t | 9.59 | 10.47 | 11.7 | |
总氮变化率/% | -5.66 | -2.92 | -15.07 | ||
总磷负荷 | 0 | 总磷负荷量/103 t | 1.88 | 2.15 | 2.44 |
总磷变化率/% | 0 | 14.32 | 29.65 | ||
+1 | 总磷负荷量/103 t | 1.82 | 2.07 | 2.35 | |
总磷变化率/% | -3.21 | -10.12 | -25.18 | ||
+2 | 总磷负荷量/103 t | 1.75 | 1.98 | 2.26 | |
总磷变化率/% | -7.11 | -5.36 | -20.22 |
[1] | 李秀芬, 朱金兆, 顾晓君, 等. 农业面源污染现状与防治进展[J]. 中国人口·资源与环境, 2010, 20(4):81-84. |
[ Li Xiufen, Zhu Jinzhao, Gu Xiaojun, et al. Current situation and control of agricultural non-point source pollution[J]. China Population, Resources and Environment, 2010, 20(4):81-84. ] | |
[2] | Xia T, Chen Z, Jin S. New normal control of agricultural non-point source pollution in the Dianchi Lake basin[J]. Meteorological and Environmental Research, 2017, 8(2):63-72. |
[3] | 丘雯文, 钟涨宝, 李兆亮, 等. 中国农业面源污染排放格局的时空特征[J]. 中国农业资源与区划, 2019, 40(1):26-34. |
[ Qiu Wenwen, Zhong Zhangbao, Li Zhaoliang, et al. Spatial-temporal variations of agricultural non-point source pollution in China[J]. China Journal Agricultural Resources and Regional Planning, 2019, 40(1):26-34. ] | |
[4] | 付磊, 李德山. 中国农业面源污染与绿色全要素生产率的区域差异[J]. 西南科技大学学报(哲学社会科学版), 2021, 38(3):37-48. |
[ Fu Lei, Li Deshan. Regional differences between of agricultural non-point source pollution and growth of Green TFP in China[J]. Journal of Southwest University of Science and Technology (Philosophy and Social Science Edition), 2021, 38(3):37-48. ] | |
[5] | 周子渭, 马琼, 侯玉龙, 等. 新疆农业面源污染及环境规制分析[J]. 安徽农业科学, 2021, 49(7):74-76. |
[ Zhou Ziwei, Ma Qiong, Hou Yulong, et al. Analysis of agricultural non-point source pollution and environmental regulation in Xinjiang[J]. Journal of Anhui Agricultural Sciences, 2021, 49(7):74-76. ] | |
[6] | 陈亚宁, 杨青, 罗毅, 等. 西北干旱区水资源问题研究思考[J]. 干旱区地理, 2012, 35(1):1-9. |
[ Chen Yaning, Yang Qing, Luo Yi, et al. Ponder on the issues of water resources in the arid region of Northwest China[J]. Arid Land Geography, 2012, 35(1):1-9. ] | |
[7] |
李哲, 丁永建, 陈艾姣, 等. 1960—2019年西北地区气候变化中的Hiatus现象及特征[J]. 地理学报, 2020, 75(9):1845-1859.
doi: 10.11821/dlxb202009003 |
[ Li Zhe, Ding Yongjian, Chen Aijiao, et al. Characteristics of warming hiatus of the climate change in Northwest China from 1960 to 2019[J]. Acta Geographica Sinica, 2020, 75(9):1845-1859. ]
doi: 10.11821/dlxb202009003 |
|
[8] | 施雅风, 沈永平, 胡汝骥. 西北气候由暖干向暖湿转型的信号、影响和前景初步探讨[J]. 冰川冻土, 2002, 24(3):219-226. |
[ Shi Yafeng, Shen Yongping, Hu Ruji. Preliminary study on the signals, impact and foreground of climatic shift from warm-dry to warm-humid in Northwest China[J]. Journal of Glaciology and Geocryology, 2002, 24(3):219-226. ] | |
[9] | 李江, 龙爱华. 近60 a新疆水资源变化及可持续利用思考[J]. 水利规划与设计, 2021, 34(7):1-5. |
[ Li Jiang, Long Aihua. Changes in Xinjiang water resources in the past 60 years and considerations on sustainable utilization[J]. Water Resources Planning and Design, 2021, 34(7):1-5. ] | |
[10] | 李慧菁, 贾尔恒·阿哈提, 程艳. 乌伦古湖流域污染负荷估算[J]. 环境工程技术学报, 2015, 5(2):121-128. |
[ Li Huijing, Jiaerheng Ahati, Cheng Yan. Estimation of pollution load in Ulungur Lake Basin[J]. Journal of Environmental Engineering Technology, 2015, 5(2):121-128. ] | |
[11] | 徐伟. 乌伦古河流域非点源污染负荷估算探讨[J]. 能源与节能, 2021, 2(1):91-92. |
[ Xu Wei. Discussion on estimation of non-point source pollution load in Ulungur river basin[J]. Energy and Energy Conservation, 2021, 2(1):91-92. ] | |
[12] | Romagnoli M, Portapila M, Rigalli A, et al. Assessment of the SWAT model to simulate a watershed with limited available data in the Pampas region, Argentina[J]. Science of the Total Environment, 2017, 596(597):437-450. |
[13] |
Grizzetti B, Bouraoui F, Granlund K, et al. Modelling diffuse emission and retention of nutrients in the Vantaanjoki watershed (Finland) using the SWAT model[J]. Ecological Modelling, 2003, 169(1):25-38.
doi: 10.1016/S0304-3800(03)00198-4 |
[14] | 薛亚婷, 孙文锦, 邹长武, 等. 基于模型的赤水河流域面源污染研究[J]. 亚热带资源与环境学报, 2020, 15(3):17-23. |
[ Xue Yating, Sun Wenjin, Zou Changwu, et al. Study on non-point source pollution in Chishui River Watershed based on SWAT model[J]. Journal of Subtropical Resources and Environment, 2020, 15(3):17-23. ] | |
[15] | 付意成, 臧文斌, 董飞, 等. 基于模型的浑太河流域农业面源污染物产生量估算[J]. 农业工程学报, 2016, 32(8):1-8. |
[ Fu Yicheng, Zang Wenbin, Dong Fei, et al. Yield calculation of agricultural non-point source pollutants in Huntai river basin based on SWAT model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(8):1-8. ] | |
[16] | 王晓燕, 秦福来, 欧洋, 等. 基于SWAT模型的流域非点源污染模拟——以密云水库北部流域为例[J]. 农业环境科学学报, 2008, 27(3):1098-1105. |
[ Wang Xiaoyan, Qin Fulai, Ou Yang, et al. SWAT-based simulation on non-point source pollution in the northern watershed of Miyun reservoi[J]. Journal of Agro-Environmental Sciences, 2008, 27(3):1098-1105. ] | |
[17] | 马睿, 程凯, 郭莹莹, 等. 基于SWAT模型的石汶河流域农业非点源氮污染时空分布特征研究[J]. 中国水土保持, 2020, 15(7):61-64. |
[ Ma Rui, Cheng Kai, Guo Yingying, et al. Research on temporal and spatial distribution characteristics of agricultural non-point source nitrogen pollution in Shiwen River Basin based on SWAT model[J]. Soil and Water Conservation in China, 2020, 15(7):61-64. ] | |
[18] | Wang Y, Bian J, Zhao Y, et al. Assessment of future climate change impacts on nonpoint source pollution in snowmelt period for a cold area using SWAT[J]. Scientific Reports, 2018, 8(1):1-13. |
[19] | 刘吉开, 万甜, 程文, 等. 未来气候情境下渭河流域陕西段非点源污染负荷响应[J]. 水土保持通报, 2018, 38(4):82-86. |
[ Liu Jikai, Wan Tian, Cheng Wen, et al. Effects of climate scenarios on non-point source pollution load on Shaanxi section of Weihe river basin[J]. Bulletin of Soil and Water Conservation, 2018, 38(4):82-86. ] | |
[20] | 赵雪松. 气候变化对营口地区农业面源污染影响的定量评估研究[J]. 水土保持应用技术, 2019, 39(4):16-18. |
[ Zhao Xuesong. Quantitative assessment of the impact of climate change on agricultural non-point source pollution in Yingkou area[J]. Technology of Soil and Water Conservation, 2019, 39(4):16-18. ] | |
[21] | 李家科, 刘健, 秦耀民, 等. 基于SWAT模型的渭河流域非点源氮污染分布式模拟[J]. 西安理工大学学报, 2008, 31(3):278-285. |
[ Li Jiake, Liu Jian, Qin Yaomin, et al. Distributed simulation on nitrogen non-point source pollution in the Weihe river watershed based on SWAT model[J]. Journal of Xi’an University of Technology, 2008, 31(3):278-285. ] | |
[22] | 宋玉鑫, 左其亭, 马军霞. 基于SWAT模型的开都河流域水文干旱变化特征及驱动因子分析[J]. 干旱区研究, 2021, 38(3):610-617. |
[ Song Yuxin, Zuo Qiting, Ma Junxia. Hydrological drought characteristics and driving factors analysis of the Kaidu River Basin based on SWAT model[J]. Arid Zone Research, 2021, 38(3):610-617. ] | |
[23] | 矫桂丽, 刘洪林, 孙秀玲, 等. 基于SWAT模型的尼山水库流域面源污染特征分析[J]. 山东农业大学学报(自然科学版), 2021, 52(3):470-474. |
[ Jiao Guili, Liu Honglin, Sun Xiuling, et al. Analysis of non-point source pollution characteristics of Nishan Reservoir based on SWAT model[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2021, 52(3):470-474. ] | |
[24] | 杨宝林, 崔远来, 赵树君, 等. 基于SWAT模型的莲塘口流域农业面源污染模拟[J]. 武汉大学学报(工学版), 2016, 49(3):359-364. |
[ Yang Baolin, Cui Yuanlai, Zhao Shujun, et al. Simulation and application of agricultural non-point source pollution in Liantangkou watershed based on SWAT model[J]. Journal of Wuhan University(Engineering and Technology Edition), 2016, 49(3):359-364. ] | |
[25] | 张鹏飞. 不同气候条件下密云水库流域非点源污染评价[D]. 北京: 首都师范大学, 2013. |
[ Zhang Pengfei. Non-point Source Pollution Assessment of the Miyun Reservoir Basin under Different Climatic Conditions[D]. Beijing: Capital Normal University, 2013. ] |
[1] | ZHAO Yuqi, WEI Tianxing. Changes in vegetation cover and influencing factors in typical counties of the Loess Plateau from 1990 to 2020 [J]. Arid Zone Research, 2024, 41(1): 147-156. |
[2] | HU Guanglu,TAO Hu,JIAO Jiao,BAI Yuanru,CHEN Haizhi,MA Jin. Runoff trend and attribution analysis of the Zhengyi Gorge in the middle reaches of the Heihe River [J]. Arid Zone Research, 2023, 40(9): 1414-1424. |
[3] | ZHOU Xiaodong, CHANG Shunli, WANG Guanzheng, ZHANG Yutao, YU Shulong, ZHANG Tongwen. Radial growth response of Picea schrenkiana to climate change in the middle section of the northern slope of the Tianshan Mountains [J]. Arid Zone Research, 2023, 40(8): 1215-1228. |
[4] | MENG Chengfeng, ZHONG Tao, ZHENG Jianghua, WANG Nan, LIU Zexuan, REN Xiangyuan. Analysis of temporal and spatial characteristics and driving forces of Kunlun glacial lakes [J]. Arid Zone Research, 2023, 40(7): 1094-1106. |
[5] | ZHAO Yanfen, PAN Borong. Potential geographical distributions of Tugarinovia in China under climate change scenarios [J]. Arid Zone Research, 2023, 40(6): 949-957. |
[6] | YAO Chunyan, LIU Honghu, LIU Jing. Variation of runoff and sediment in the headwaters of the Yangtze River from 1980 to 2020 [J]. Arid Zone Research, 2023, 40(5): 726-736. |
[7] | ZHAO Meiliang, CAO Guangchao, ZHAO Qinglin, CAO Shengkui. Effects of climate and land use change on the spatial distribution of hydrological factors in the source region of Datong River [J]. Arid Zone Research, 2023, 40(3): 381-391. |
[8] | DAI Jun, HU Haizhu, MAO Xiaomin, ZHANG Ji. Future climate change trends in the Shiyang River Basin based on the CMIP6 multi-model estimation data [J]. Arid Zone Research, 2023, 40(10): 1547-1562. |
[9] | YAO Daijun, LIU Kang, HUI Yuxiang, WANG Kaixin. The response and mechanism of Pinus tabulaeformis tree-ring width to climate change in Maijishan Mountain, Tianshui, China [J]. Arid Zone Research, 2023, 40(1): 19-29. |
[10] | CHEN Hongguang, MENG Fanhao, SA Chula, LUO Min, WANG Mulan, LIU Guixiang. Analysis of the characteristics of runoff evolution and its driving factors in a typical inland river basin in arid regions [J]. Arid Zone Research, 2023, 40(1): 39-50. |
[11] | ZHANG Haochen,SA Chula,MENG Fanhao,LUO Min,WANG Mulan,GAO Hongdou,ADIYA Saruulzaya. Dynamic changes and driving factors of the surface freeze-thaw index in Inner Mongolia [J]. Arid Zone Research, 2022, 39(6): 1996-2008. |
[12] | WANG Jingwen,TANG Zhiguang,DENG Gang,HU Guojie,SANG Guoqing. Monitoring of snowline altitude at the end of melting season in Tianshan Mountains from 1991 to 2021 [J]. Arid Zone Research, 2022, 39(5): 1385-1397. |
[13] | GUO Yili,LI Shuheng,WANG Jiachuan,HAN Yijie. Response divergence of radial growth to climate change in earlywood and latewood of Larix principis-rupprechtii in Luya Mountain [J]. Arid Zone Research, 2022, 39(5): 1449-1463. |
[14] | WANG Xiaofei,HUANG Yue,LIU Tie,LI Junli,WANG Zheng,ZAN Chanjuan,DUAN Yongchao. Analysis of water balance change and influencing factors in Issyk-Kul Lake in recent 60 years [J]. Arid Zone Research, 2022, 39(5): 1576-1587. |
[15] | LUO Chengyan,CHEN Fulong,HE Chaofei,LONG Aihua,QIAO Changlu. Applicability of CMADS in runoff simulation of Yulong Kashi River [J]. Arid Zone Research, 2022, 39(4): 1090-1101. |
|