Arid Zone Research ›› 2021, Vol. 38 ›› Issue (6): 1614-1623.doi: 10.13866/j.azr.2021.06.13
• Weather and Climate • Previous Articles Next Articles
ZHAO Xiaohan1,2(),ZHANG Fangmin1,2(),HAN Dianchen1,2,WENG Shengheng1,2
Received:
2021-02-07
Revised:
2021-04-21
Online:
2021-11-15
Published:
2021-11-29
Contact:
Fangmin ZHANG
E-mail:zhxhmw@163.com;fmin.zhang@nuist.edu.cn
ZHAO Xiaohan,ZHANG Fangmin,HAN Dianchen,WENG Shengheng. Evapotranspiration changes and its attribution in semi-arid regions of Inner Mongolia[J].Arid Zone Research, 2021, 38(6): 1614-1623.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Variation characteristics of evapotranspiration (ET) and its influencing factors in different periods"
因子 | 1981—2018年 | 1981—1996年 | 1998—2018年 | |||||
---|---|---|---|---|---|---|---|---|
β | R2 | β | R2 | β | R2 | |||
ET/(mm·a-1) | 1.75 | 0.73** | -0.41 | 0.05 | 1.70 | 0.51** | ||
VPD/hPa | 0.00 | 0.50** | 0.00 | 0.03 | 0.00 | 0.18* | ||
LAI | 0.01 | 0.15* | 0.01 | 0.23* | 0.03 | 0.28* | ||
TA/℃ | 0.05 | 0.45** | 0.06 | 0.22* | 0.01 | 0.02 | ||
WD/(m·s-1) | -0.01 | 0.64** | -0.03 | 0.74** | -0.00 | 0.02 | ||
SMV/(m3·m-3) | -0.00 | 0.03 | -0.00 | 0.01 | -0.00 | 0.002 | ||
PRE/(mm·a-1) | -0.82 | 0.03 | 2.65 | 0.12 | 1.95 | 0.04 | ||
SD/h | -1.24 | 0.05 | -2.01 | 0.04 | -4.91 | 0.18* |
Tab. 3
Path analysis statistics of influencing factors of evapotranspiration (ET)"
因子 | 直接作用 | 总间接作用 | 间接作用 | 决定系数 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
TA | PRE | WD | SD | VPD | LAI | SMV | ||||
TA | -0.60 | 1.30 | - | 0.03 | 0.22 | 0.01 | 0.99 | 0.03 | 0.02 | -0.42 |
PRE | -0.11 | -0.30 | 0.15 | - | -0.03 | 0.05 | -0.53 | 0.09 | -0.02 | 0.05 |
WD | -0.34 | -0.23 | 0.40 | -0.01 | - | -0.02 | -0.56 | -0.04 | 0.00 | 0.19 |
SD | -0.09 | 0.17 | 0.05 | 0.07 | -0.07 | - | 0.15 | -0.05 | 0.02 | -0.01 |
VPD | 1.12 | -0.27 | -0.54 | 0.05 | 0.17 | -0.01 | - | 0.02 | 0.03 | 0.95 |
LAI | 0.17 | 0.08 | -0.11 | -0.06 | 0.09 | 0.02 | 0.15 | - | -0.01 | 0.04 |
SMV | -0.05 | -0.39 | 0.30 | -0.05 | -0.01 | 0.03 | -0.69 | 0.03 | - | 0.02 |
Tab. 4
Contribution rate analysis of influencing factors on evapotranspiration (ET) variation on different underlying surfaces"
因子 | TA/% | LAI/% | VPD/% | WD/% | SMV/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
类型 | 占比 | | 占比 | | 占比 | | 占比 | | 占比 | | ||||
耕地 | 1.30 | 40.47 | 9.82 | 38.10 | 86.10 | 45.83 | 0.22 | 35.58 | 2.56 | 34.73 | ||||
林地 | 0.69 | 50.23 | 4.39 | 38.61 | 93.72 | 45.00 | 0.26 | 33.56 | 0.94 | 34.19 | ||||
草地 | 0.76 | 43.89 | 2.43 | 37.65 | 95.18 | 47.86 | 0.10 | 39.29 | 1.53 | 37.24 | ||||
城市 | 0.96 | 38.12 | 8.26 | 38.12 | 88.89 | 48.72 | 0.14 | 35.09 | 1.75 | 36.66 | ||||
裸地 | 1.13 | 40.64 | 1.83 | 37.80 | 96.14 | 46.89 | 0.12 | 41.99 | 0.79 | 40.92 |
[1] |
Liang W, Bai D, Wang F, et al. Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China’s Loess Plateau[J]. Water Resources Research, 2015, 51(8):6500-6519.
doi: 10.1002/2014WR016589 |
[2] |
Huntington T. Evidence for intensification of the global water cycle: Review and synjournal[J]. Journal of Hydrology, 2006, 319(1):83-95.
doi: 10.1016/j.jhydrol.2005.07.003 |
[3] |
Yu L, Josey S, Bingham F, et al. Intensification of the global water cycle and evidence from ocean salinity: A synjournal review[J]. Annals of the New York Academy of Sciences, 2020, 1472(1):76-94.
doi: 10.1111/nyas.v1472.1 |
[4] | Wang K, Dickinson R. A Review of Global Terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability[J]. Reviews of Geophysics, 2012, 50(2):1-54. |
[5] | Katul G, Oren R, Manzoni S, et al. Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system[J]. Reviews of Geophysics, 2012, 50: RG3002. |
[6] |
Peng L, Li D, Sheffield J. Drivers of variability in atmospheric evaporative demand: Multiscale spectral analysis based on observations and physically based modeling[J]. Water Resources Research, 2018, 54(5):3510-3529.
doi: 10.1029/2017WR022104 |
[7] |
Jiang Z, Yang Z, Zhang S, et al. Revealing the spatio-temporal variability of evapotranspiration and its components based on an improved Shuttleworth-Wallace model in the Yellow River Basin[J]. Journal of Environmental Management, 2020, 262:110310.
doi: 10.1016/j.jenvman.2020.110310 |
[8] |
Zeng Z, Peng L, Piao S. Response of terrestrial evapotranspiration to Earth’s greening[J]. Current Opinion in Environmental Sustainability, 2018, 33:9-25.
doi: 10.1016/j.cosust.2018.03.001 |
[9] | 孟莹, 姜鹏, 方缘. 大气水分亏缺对中国两种典型草地生态系统总初级生产力的影响[J]. 生态学杂志, 2020, 39(11):3633-3642. |
[ Meng Ying, Jiang Peng, Fang Yuan. Contrasting impacts of vapor pressure deficit on gross primary productivity of temperate steppe in Inner Mongolia and alpine shrub-meadow in China[J]. Chinese Journal of Ecology, 2020, 39(11):3633-3642. ] | |
[10] |
Novick K, Ficklin D, Stoy P, et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes[J]. Nature Climate Change, 2016, 6(11):1023-1027.
doi: 10.1038/nclimate3114 |
[11] |
Ponce-campos G, Moran M, Huete A, et al. Ecosystem resilience despite large-scale altered hydroclimatic conditions[J]. Nature, 2013, 494(7437):349-352.
doi: 10.1038/nature11836 |
[12] | 申露婷, 张方敏, 黄进, 等. 1961—2018年内蒙古生长季昼夜降水气候特征[J]. 干旱区研究, 2020, 37(6):1519-1527. |
[ Shen Luting, Zhang Fangmin, Huang Jin, et al. Climate characteristics of day and night precipitation during the growing season in Inner Mongolia from 1961 to 2018[J]. Arid Zone Research, 2020, 37(6):1519-1527. ] | |
[13] |
Zhao M, Geruo A, Zhang J, et al. Ecological restoration impact on total terrestrial water storage[J]. Nature Sustainability, 2020, 4:56-62.
doi: 10.1038/s41893-020-00600-7 |
[14] | 马爱华, 岳大鹏, 赵景波, 等. 近60 a来内蒙古极端降水时空变化及其影响[J]. 干旱区研究, 2020, 37(1):74-85. |
[ Ma Aihua, Yue Dapeng, Zhao Jingbo, et al. Spatiotemporal variation and effect of extreme precipitation in Inner Mongolia in recent 60 years[J]. Arid Zone Research, 2020, 37(1):74-85. ] | |
[15] | 张巧凤, 刘桂香, 于红博, 等. 基于MOD16A2的锡林郭勒草原近14年的蒸散发时空动态[J]. 草地学报, 2016, 24(2):286-293. |
[ Zhang Qiaofeng, Liu Guixiang, Yu Hongbo, et al. Temporal and spatial dynamic of ET based on MOD16A2 in recent fourteen years in Xilingol steppe[J]. Acta Agrestia Sinica, 2016, 24(2):286-293. ] | |
[16] | Liu Y, Liu R, Chen J. Retrospective retrieval of long-term consistent global leaf area index (1981-2011) from combined AVHRR and MODIS data[J]. Journal of Geophysical Research, 2012, 117(G4): G04003. https://doi.org/10.1029/2012JG002084. |
[17] | 张方敏, 居为民, 陈镜明, 等. 基于BEPS生态模型对亚洲东部地区蒸散量的模拟[J]. 自然资源学报, 2010, 25(9):1596-1606. |
[ Zhang Fangmin, Ju Weimin, Chen Jingming, et al. Study on evapotranspiration in East Asia using the BEPS ecological model[J]. Journal of Natural Resources, 2010, 25(9):1596-1606. ] | |
[18] | 陈镜明, 柳竞先, 罗翔中. 基于碳水通量耦合原理改进Penman-Monteith蒸散发模型[J]. 大气科学学报, 2020, 43(1):59-75. |
[ Chen Jingming, Liu Jingxian, Luo Xiangzhong. Improving the penman-monteith evapotranspiration model based on the coupling principle of carbon and water fluxes[J]. Transactions of Atmospheric Sciences, 2020, 43(1):59-75. ] | |
[19] | 韩典辰, 张方敏, 陈吉泉, 等. 半干旱区草地站蒸散特征及其对气象因子和植被的响应[J]. 草地学报, 2021, 29(1):166-173. |
[ Han Dianchen, Zhang Fangmin, Chen Jiquan, et al. Characteristics of grassland evapotranspiration in Semi-Arid Area and its responses to meteorological factors and vegetation[J]. Acta Agrestia Sinica, 2021, 29(1):166-173. ] | |
[20] |
Tian D, Niu S, Pan Q, et al. Nonlinear responses of ecosystem carbon fluxes and water-use efficiency to nitrogen addition in Inner Mongolia grassland[J]. Functional Ecology, 2016, 30(3):490-499.
doi: 10.1111/fec.2016.30.issue-3 |
[21] |
Ran L, Wang S, Fan X. Channel change at Toudaoguai station and its responses to the operation of up-stream reservoirs in the upper Yellow River[J]. Journal of Geographical Sciences, 2010, 20(2):231-247.
doi: 10.1007/s11442-010-0231-9 |
[22] | Rodionov S. A sequential algorithm for testing climate regime shifts[J]. Geophysical Reseaech Letters, 2004, 31(9):L09204. |
[23] |
Zhao M, Running S. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009[J]. Science, 2010, 329:940-943.
doi: 10.1126/science.1192666 |
[24] | 王静, 姚顺波, 刘天军. 退耕还林背景下降水利用效率时空演变及驱动力探讨[J]. 农业工程学报, 2020, 36(1):128-137. |
[ Wang Jing, Yao Shunbo, Liu Tianjun. Spatio-temporal evolution and driving forces of rainfall use efficiency in land restoration[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(1):128-137. ] | |
[25] | 张雪松, 闫艺兰, 胡正华. 不同时间尺度农田蒸散影响因子的通径分析[J]. 中国农业气象, 2017, 38(4):201-210. |
[ Zhang Xuesong, Yan Yilan, Hu Zhenghua. Using path analysis to identify impacting factors of evapotranspiration at different time scales in farmland[J]. Chinese Journal of Agrometeorology, 2017, 38(4):201-210. ] | |
[26] |
Grinsted A, Moore J, Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical time series[J]. Nonlinear Process Geophys, 2004, 11(5):561-566.
doi: 10.5194/npg-11-561-2004 |
[27] | 牛忠恩, 胡克梅, 何洪林, 等. 2000-2015年中国陆地生态系统蒸散时空变化及其影响因素[J]. 生态学报, 2019, 39(13):4697-4709. |
[ Niu Zhong’en, Hu Kemei, He Honglin, et al. The spatial-temporal patterns of evapotranspiration and its influencing factors in Chinese terrestrial ecosystem from 2000 to 2015[J]. Acta Ecologica Sinica, 2019, 39(13):4697-4709. ] | |
[28] | 李霞, 刘廷玺, 段利民, 等. 半干旱区沙丘、草甸作物系数模拟及蒸散发估算[J]. 干旱区研究, 2020, 37(5):1246-1255. |
[ Li Xia, Liu Yanxi, Duan Limin, et al. Crop coefficient simulation and evapotranspiration estimation of dune and meadow in a semiarid area[J]. Arid Zone Research, 2020, 37(5):1246-1255. ] | |
[29] | 王思如, 雷慧闽, 段利民, 等. 气候变化对科尔沁沙地蒸散发和植被的影响[J]. 水利学报, 2017, 48(5):535-544, 550. |
[ Wang Siru, Lei Huimin, Duan Limin, et al. Simulated impacts of climate change on evapotranspiration and vegetation in Horqin Sandy Land[J]. Journal of Hydraulic Engineering, 2017, 48(5):535-544, 550. ] | |
[30] |
Zhang N, Liu C. Simulated water fluxes during the growing season in semiarid grassland ecosystems under severe drought conditions[J]. Journal of Hydrology, 2014, 512:69-86.
doi: 10.1016/j.jhydrol.2014.02.056 |
[31] |
Jung M, Ciais P, Seneviratne S, et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply[J]. Nature, 2010, 467(7318):951-954.
doi: 10.1038/nature09396 |
[32] | 郭少宏, 闫新光. “98”内蒙特大洪水灾害成因抗洪经验及防洪工作的探讨[J]. 内蒙古水利, 1999, 20(1):8-10. |
[ Guo Shaohong, Yan Xinguang. Discussion on the reason, resistance experience and prevention work of Inner Mongolia flood disaster in 1998[J]. Inner Mongolia Water Resources, 1999, 20(1):8-10. ] | |
[33] | Yuan W, Zheng Y, Piao S, et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth[J]. Science Advances, 2019, 5(8): eaax1396. |
[34] |
Zhou S, Williams A, Berg A, et al. Land-atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity[J]. Proceedings of the National Academy of Sciences, 2019, 116(38):18848-18853.
doi: 10.1073/pnas.1904955116 |
[35] |
Zhang Y, Peña-arancibia J, Mcvicar T, et al. Multi-decadal trends in global terrestrial evapotranspiration and its components[J]. Scientific Reports, 2016, 6(1):19124.
doi: 10.1038/srep19124 |
|