Arid Zone Research ›› 2025, Vol. 42 ›› Issue (1): 166-178.doi: 10.13866/j.azr.2025.01.15
• Agricultural Ecology • Previous Articles Next Articles
FENG Kepeng1,2,3,4,5(), XU Dehao1, ZHUANG Haoran1
Received:
2023-09-20
Revised:
2024-01-03
Online:
2025-01-15
Published:
2025-01-17
FENG Kepeng, XU Dehao, ZHUANG Haoran. An estimation method of remote sensing evapotranspiration in farmland based on the three-temperature model with adjoint calibrated of WOFOST[J].Arid Zone Research, 2025, 42(1): 166-178.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab.2
Calibration values of the main parameters in the WOFOST model"
参数 | 定义 | 取值 | 参数 | 定义 | 取值 |
---|---|---|---|---|---|
TSUM1 | 出苗至抽雄有效积温 | 1026 | AMAXTB1.75 | 49 | |
TSUM2 | 抽雄至成熟有效积温 | 889 | AMAXTB2.0 | 42 | |
DTSMTB0 | 积温日增长函数 | 0 | KDIFTB0.0 | 可见光漫反射消光系数函数 | 0.6 |
DTSMTB6 | 0 | KDIFTB2.0 | 0.6 | ||
DTSMTB30 | 22 | EFFTB0.0 | 叶片光合作用效率函数 | 0.45 | |
DTSMTB35 | 24 | EFFTB40.0 | 0.45 | ||
TDWI | 初始地上总生物量 | 18 | CVL | 叶同化物转换效率 | 0.680 |
LAIEM | 出苗时叶面积指数 | 0.00836 | CVO | 贮存器官同化物转换效率 | 0.665 |
RGRLAI | 叶面积指数最大增长速率 | 0.00294 | CVR | 根同化物转换效率 | 0.690 |
SLATB0.0 | 比叶面积函数 | 0.0025 | CVS | 茎同化物转换效率 | 0.682 |
SLATB0.78 | 0.0014 | RML | 叶相对维持呼吸速率 | 0.03 | |
SLATB2.0 | 0.0014 | RMO | 贮存器官相对维持呼吸速率 | 0.01 | |
SPAN | 叶片衰老系数 | 42 | RMR | 根相对维持呼吸速率 | 0.015 |
TBASE | 叶片生长下限温度 | 8 | RMS | 茎相对维持呼吸速率 | 0.015 |
AMAXTB0.0 | 最大CO2同化速率 | 70 | SMW | 萎蔫点含水量 | 0.10 |
AMAXTB1.25 | 63 | SMFCF | 田间持水量下的土壤含水量 | 0.27 | |
AMAXTB1.50 | 49 | SM0 | 饱和含水量 | 0.40 |
[1] | Zhang K, Kimball J S, Running S W. A review of remote sensing based actual evapotranspiration estimation[J]. Wiley Interdisciplinary Reviews: Water, 2016, 3(6): 834-853. |
[2] | Yang X, Zhou Q, Melville M. Estimating local sugarcane evapotranspiration using Landsat TM image and a VITT concept[J]. International Journal of Remote Sensing, 1997, 18(2): 453-459. |
[3] | Bastiaanssen W G M, Menenti M, Feddes R A, et al. A remote sensing surface energy balance algorithm for land (SEBAL)[J]. Journal of Hydrology, 1998, 212: 198-212. |
[4] | Su Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes[J]. Hydrology and Earth System Sciences, 2002, 6(1): 85-100. |
[5] |
Nieto H, Kustas W P, Torres-Rúa A, et al. Evaluation of TSEB turbulent fluxes using different methods for the retrieval of soil and canopy component temperatures from UAV thermal and multispectral imagery[J]. Irrigation Science, 2019, 37: 389-406.
doi: 10.1007/s00271-018-0585-9 pmid: 32355404 |
[6] | 乔帅帅, 魏征, 张宝忠, 等. 基于DNDC模型的北京市大兴区冬小麦农业用水效率[J]. 排灌机械工程学报, 2018, 36(11): 1087-1091. |
[Qiao Shuaishuai, Wei Zheng, Zhang Baozhong, et al. Water use efficiency of winter wheat based on DNDC model in Daxing District of Beijing[J]. Journal of Drainage and Irrigation Machinery Engineering (JDIME), 2018, 36(11): 1087-1091. ] | |
[7] | Timmermans W J, Kustas W P, Anderson M C, et al. An intercomparison of the surface energy balance algorithm for land (SEBAL) and the two-source energy balance (TSEB) modeling schemes[J]. Remote Sensing of Environment, 2007, 108(4): 369-384. |
[8] | García-Santos V, Sánchez J M, Cuxart J. Evapotranspiration acquired with remote sensing thermal-based algorithms: A state-of-the-art review[J]. Remote Sensing, 2022, 14(14): 3440. |
[9] | 张圆, 贾贞贞, 刘绍民, 等. 遥感估算地表蒸散发真实性检验研究进展[J]. 遥感学报, 2020, 24(8): 975-999. |
[Zhang Yuan, Jia Zhenzhen, Liu Shaomin, et al. Advances in validation of remotely sensed land surface evapotranspiration[J]. Journal of Remote Sensing, 2020, 24(8): 975-999. ] | |
[10] | Lu Y, Chibarabada T P, McCabe M F, et al. Global sensitivity analysis of crop yield and transpiration from the FAO-AquaCrop model for dryland environments[J]. Field Crops Research, 2021, 269: 108182. |
[11] | Ran H, Kang S, Hu X, et al. A framework to quantify uncertainty of crop model parameters and its application in arid Northwest China[J]. Agricultural and Forest Meteorology, 2022, 316: 108844. |
[12] | Zhou J, Cheng G, Li X, et al. Numerical modeling of wheat irrigation using coupled HYDRUS and WOFOST models[J]. Soil Science Society of America Journal, 2012, 76(2): 648-662. |
[13] | Dewenam L E F, Er-Raki S, Ezzahar J, et al. Performance evaluation of the WOFOST model for estimating evapotranspiration, soil water content, grain yield and total above-ground biomass of winter wheat in Tensift Al Haouz (Morocco): Application to yield gap estimation[J]. Agronomy, 2021, 11(12): 2480. |
[14] |
De Wit A, Boogaard H, Fumagalli D, et al. 25 years of the WOFOST cropping systems model[J]. Agricultural Systems, 2019, 168: 154-167.
doi: 10.1016/j.agsy.2018.06.018 |
[15] | Saltelli A, Tarantola S, Chan K P S. A quantitative model-independent method for global sensitivity analysis of model output[J]. Technometrics, 1999, 41(1): 39-56. |
[16] | DeJonge K C, Ascough II J C, Ahmadi M, et al. Global sensitivity and uncertainty analysis of a dynamic agroecosystem model under different irrigation treatments[J]. Ecological Modelling, 2012, 231: 113-125. |
[17] | De Wit A, Boogaard H L, Supit I, et al. System Description of the WOFOST 7.2, Cropping Systems Model[R]. Wageningen Environmental Research, 2020. |
[18] | Arthur D, Vassilvitskii S. K-means++: The Advantages of Careful Seeding[R]. Stanford Theory Group, 2006. |
[19] |
熊博文, 李桐, 黄樱, 等. 不同参考温度取值对三温模型反演植被蒸腾精度的影响[J]. 植物生态学报, 2022, 46(4): 383-393.
doi: 10.17521/cjpe.2021.0219 |
[Xiong Bowen, Li Tong, Huang Ying, et al. Effects of different reference temperature values on the accuracy of vegetation transpiration estimation by three-temperature model[J]. Chinese Journal of Plant Ecology, 2022, 46(4): 383-393. ]
doi: 10.17521/cjpe.2021.0219 |
|
[20] | Hatfield J L, Reginato R J, Idso S B. Comparison of long-wave radiation calculation methods over the United States[J]. Water Resources Research, 1983, 19(1): 285-288. |
[21] | Jackson R D, Hatfield J L, Reginato R J, et al. Estimation of daily evapotranspiration from one time-of-day measurements[J]. Agricultural Water Management, 1983, 7(1-3): 351-362. |
[22] | Meeus J H. Astronomical algorithms[M]. Willmann-Bell, Incorporated, 1991. |
[23] | Menenti M, Azzali S, Verhoef W, et al. Mapping agroecological zones and time lag in vegetation growth by means of Fourier analysis of time series of NDVI images[J]. Advances in Space Research, 1993, 13(5): 233-237. |
[24] | Moriasi D N, Arnold J G, Van Liew M W, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the ASABE, 2007, 50(3): 885-900. |
[25] | Zhou J, Jia L, Menenti M. Reconstruction of global MODIS NDVI time series: Performance of Harmonic ANalysis of Time Series (HANTS)[J]. Remote Sensing of Environment, 2015, 163: 217-228. |
[26] | Saltelli A. Global Sensitivity Analysis: The Primer[M]. New York: John Wiley & Sons, 2008. |
[27] | Zhu X, Xu K, Liu Y, et al. Assessing the vulnerability and risk of maize to drought in China based on the AquaCrop model[J]. Agricultural Systems, 2021, 189: 103040. |
[28] | LaVenue A M, Pickens J F. Application of a coupled adjoint sensitivity and kriging approach to calibrate a groundwater flow model[J]. Water Resources Research, 1992, 28(6): 1543-1569. |
[29] | Käbe C, Maruhn J H, Sachs E W. Adjoint-based Monte Carlo calibration of financial market models[J]. Finance and Stochastics, 2009, 13: 351-379. |
[30] | Clare M C A, Kramer S C, Cotter C J, et al. Calibration, inversion and sensitivity analysis for hydro-morphodynamic models through the application of adjoint methods[J]. Computers & Geosciences, 2022, 163: 105104. |
[31] | Keane R, Gao H O. Fast calibration of car-following models to trajectory data using the adjoint method[J]. Transportation Science, 2021, 55(3): 592-615. |
[32] | Jiang L, Zhang B, Han S, et al. Upscaling evapotranspiration from the instantaneous to the daily time scale: Assessing six methods including an optimized coefficient based on worldwide eddy covariance flux network[J]. Journal of Hydrology, 2021, 596: 126135. |
[33] | Kumar U, Srivastava A, Kumari N, et al. Evaluation of spatio-temporal evapotranspiration using satellite-based approach and lysimeter in the agriculture dominated catchment[J]. Journal of the Indian Society of Remote Sensing, 2021, 49: 1939-1950. |
|