Arid Zone Research ›› 2022, Vol. 39 ›› Issue (6): 1819-1831.doi: 10.13866/j.azr.2022.06.12
• Land and Water Resources • Previous Articles Next Articles
ZHAO Mengen1,2(),YAN Qingwu1,3(),LIU Zhengting1,2,WANG Wenming1,2,LI Gui’e1,3,WU Zhenhua1,3
Received:
2022-05-04
Revised:
2022-08-24
Online:
2022-11-15
Published:
2023-01-17
Contact:
Qingwu YAN
E-mail:1427277041@qq.com;3403175@163.com
ZHAO Mengen,YAN Qingwu,LIU Zhengting,WANG Wenming,LI Gui’e,WU Zhenhua. Analysis of temporal and spatial evolution and influencing factors of soil erosion in Ordos City[J].Arid Zone Research, 2022, 39(6): 1819-1831.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 5
Area of different soil erosion grades"
侵蚀等级 | 面积/km2 | 比例/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2000年 | 2005年 | 2010年 | 2015年 | 2019年 | 2000年 | 2005年 | 2010年 | 2015年 | 2019年 | ||
微度 | 22839.56 | 33191.72 | 29709.93 | 24713.01 | 22828.82 | 26.26 | 38.16 | 34.16 | 28.41 | 26.25 | |
轻度 | 25270.39 | 24532.83 | 27151.54 | 25847.95 | 22378.47 | 29.06 | 28.21 | 31.22 | 29.72 | 25.73 | |
中度 | 19073.19 | 15530.29 | 16791.69 | 18171.16 | 19312.13 | 21.93 | 17.86 | 19.31 | 20.89 | 22.20 | |
强度 | 9276.38 | 6907.29 | 6985.41 | 8558.72 | 10216.18 | 10.67 | 7.94 | 8.03 | 9.84 | 11.75 | |
极强度 | 7031.62 | 4744.24 | 4537.77 | 6309.29 | 8072.58 | 8.08 | 5.45 | 5.22 | 7.25 | 9.28 | |
剧烈 | 3482.65 | 2067.40 | 1797.13 | 3373.29 | 4165.18 | 4.00 | 2.38 | 2.07 | 3.88 | 4.79 |
Tab. 7
Average soil erosion of different land use types /(t·km-2·a-1)"
2000年 | 2005年 | 2010年 | 2015年 | 2019年 | |
---|---|---|---|---|---|
耕地 | 924.72 | 474.56 | 616.79 | 803.35 | 501.95 |
工矿用地 | 6549.87 | 5838.23 | 7000.92 | 8977.01 | 14450.75 |
城镇用地 | 272.35 | 161.57 | 264.02 | 324.55 | 302.48 |
草地 | 3505.69 | 2824.72 | 2437.27 | 3443.18 | 3775.18 |
其他用地 | 5244.54 | 3655.50 | 5615.15 | 5001.56 | 6397.47 |
Tab. 8
Average soil erosion of different landform type /(t·km-2·a-1)"
2000年 | 2005年 | 2010年 | 2015年 | 2019年 | |
---|---|---|---|---|---|
中起伏山地 | 10714.33 | 15044.19 | 8821.27 | 13159.85 | 15159.90 |
剥蚀台地 | 4851.99 | 7887.17 | 4077.70 | 5603.21 | 7884.93 |
干燥洪积平原 | 5619.93 | 6823.66 | 4345.24 | 5421.02 | 7475.73 |
黄土梁峁 | 7477.71 | 3216.24 | 3589.22 | 7035.75 | 4663.14 |
剥蚀平原 | 4430.40 | 3474.53 | 2971.53 | 4530.06 | 4608.90 |
丘陵 | 4155.03 | 3160.80 | 2994.71 | 4474.03 | 4462.66 |
冲积洪积平原 | 4763.53 | 2782.47 | 3183.56 | 4875.86 | 4004.45 |
湖积平原 | 2777.36 | 1903.60 | 2823.42 | 3156.54 | 3939.80 |
风积地貌 | 3219.93 | 2079.13 | 2637.73 | 2849.38 | 3773.89 |
冲积平原 | 1966.72 | 2089.69 | 1735.16 | 1904.83 | 2418.63 |
洪积平原 | 1831.32 | 2283.16 | 1593.97 | 1925.75 | 2354.03 |
[1] | 颜世敏, 马阔. 土壤侵蚀影响因素及其危害分析[J]. 江西农业, 2019(6): 67. |
[ Yan Shimin, Ma Kuo. Analysis on influencing factors and hazards of soil erosion[J]. Jiangxi Agriculture, 2019(6): 67. ] | |
[2] | 陈朝良, 赵广举, 穆兴民, 等. 基于RUSLE模型的湟水流域土壤侵蚀时空变化[J]. 水土保持学报, 2021, 35(4): 73-79. |
[ Chen Chaoliang, Zhao Guangju, Mu Xingmin, et al. Spatial-temporal change of soil erosion in Huangshui Watershed based on RUSLE model[J]. Journal of Soil and Water Conservation, 2021, 35(4): 73-79. ] | |
[3] | 张素, 熊东红, 吴汉, 等. 基于RUSLE模型的孙水河流域土壤侵蚀空间分异特征[J]. 水土保持学报, 2021, 35(5): 24-30. |
[ Zhang Su, Xiong Donghong, Wu Han, et al. Research on spatial variation of soil erosion in Sunshui River Basin based on RUSLE model[J]. Journal of Soil and Water Conservation, 2021, 35(5): 24-30. ] | |
[4] |
Islam M R, Wan Z, Lai S H, et al. Development of an erosion model for Langat River Basin, Malaysia, adapting GIS and RS in RUSLE[J]. Applied Water Science, 2020, 10(7): 1-11.
doi: 10.1007/s13201-019-1058-x |
[5] | Melese T, Senamaw A, Belay T, et al. The spatiotemporal dynamics of land use land cover change, and its impact on soil erosion in Tagaw Watershed, Blue Nile Basin, Ethiopia[J]. Global Challenges, 2021, 5(7): 1-13. |
[6] |
Alitane A, Essahlaoui A, Hafyani M E, et al. Water erosion monitoring and prediction in response to the effects of climate change using RUSLE and SWAT equations: Case of R’Dom Watershed in Morocco[J]. Land, 2022, 11(1): 93.
doi: 10.3390/land11010093 |
[7] | 贾磊, 姚顺波, 邓元杰, 等. 渭河流域土壤侵蚀时空特征及其地理探测[J]. 生态与农村环境学报, 2021, 37(3): 305-314. |
[ Ja Lei, Yao Shunbo, Deng Yuanjie, et al. Temporal and spatial characteristics of soil erosion risk in Weihe River Basin and its geographical exploration[J]. Journal of Ecology and Rural Environment, 2021, 37(3): 305-314. ] | |
[8] | 田义超, 黄远林, 张强, 等. 北部湾钦江流域土壤侵蚀及其硒元素流失评估[J]. 中国环境科学, 2019, 39(1): 257-273. |
[ Tian Yichao, Huang Yuanlin, Zhang Qiang, et al. Soil erosion and selenium loss in Qinjiang River Basin in Beibu Gulf coastal zone[J]. China Environmental Science, 2019, 39(1): 257-273. ] | |
[9] |
Mhaske S N, Pathak K, Dash S S, et al. Assessment and management of soil erosion in the hilltop mining dominated catchment using GIS integrated RUSLE model[J]. Journal of Environmental Management, 2021, 294(11): 112987.
doi: 10.1016/j.jenvman.2021.112987 |
[10] | 王慧子. 经济新常态下煤炭经济的发展问题及对策——以内蒙古为例[J]. 内蒙古科技与经济, 2020(18): 51-52. |
[ Wang Huizi. Development problems and countermeasures of coal economy under the new normal of economy: Taking Inner Mongolia as an example[J]. Inner Mongolia Science Technology & Economy, 2020(18): 51-52. ] | |
[11] | 白壮壮, 崔建新, 丁晓辉. 1986—2015年鄂尔多斯高原沙漠化及其驱动因素研究[J]. 干旱区研究, 2020, 37(3): 749-756. |
[ Bai Zhuangzhuang, Cui Jianxin, Ding Xiaohui. Desertification and its driving factors in the Ordos Plateau, from 1986 to 2015[J]. Arid Zone Research, 2020, 37(3): 749-756. ] | |
[12] | 陈佳锐, 叶子瑜, 张照熙, 等. 基于超效率BCC-DEA模型西部城市产业园国土空间利用绩效评价——以鄂尔多斯市为例[J]. 上海国土资源, 2021, 42(2): 44-48, 94. |
[ Chen Jiarui, Ye Ziyu, Zhang Zhaoxi, et al. Performance evaluation of land and space utilization of industrial parks in western cities based on the super efficiency BCC-DEA model: A case study of Ordos City[J]. Shanghai Land & Resources, 2021, 42(2): 44-48, 94. ] | |
[13] | 陶鸿斌, 汪文飞. 基于GIS分析土壤侵蚀过程中氮磷流失分布——以定西市安定区为例[J]. 绿色科技, 2018(24): 15-17, 19. |
[ Tao Hongbin, Wang Wenfei. Analysis of nitrogen and phosphorus losses in soil erosion process based on GIS: Taking Dingxi city Anding district as an example[J]. Journal of Green Science and Technology, 2018(24): 15-17, 19. ] | |
[14] | 章文波, 付金生. 不同类型雨量资料估算降水侵蚀力[J]. 资源科学, 2003, 25(1): 35-41. |
[ Zhang Wenbo, Fu Jinsheng. Rainfall erosivity estimation under different rainfall amount[J]. Resources Science, 2003, 25(1): 35-41. ] | |
[15] |
胡刚, 宋慧, 石星军, 等. 基于RUSLE的卧虎山水库流域土壤侵蚀特征分析[J]. 地理科学, 2018, 38(4): 610-617.
doi: 10.13249/j.cnki.sgs.2018.04.015 |
[ Hu Gang, Song Hui, Shi Xingjun, et al. Soil erosion characteristics based on RUSLE in the Wohushan Reservoir Watershed[J]. Scientia Geographica Sinica, 2018, 38(4): 610-617. ]
doi: 10.13249/j.cnki.sgs.2018.04.015 |
|
[16] | Williams J R, Renard K G, Dyke P T. EPIC: A new method for assessing erosion’s effect on soil productivity[J]. Journal of Soil & Water Conservation, 1983, 38(5): 381-383. |
[17] | Foster G R, Mccool D K, Renard K G, et al. Conversion of the universal soil los equation to SI metric units[J]. Journal of Soil and Water Conservation, 1981, 36(6): 355-359. |
[18] | 张园眼, 李天宏. 基于GIS和RUSLE模型的深圳市土壤侵蚀研究[J]. 应用基础与工程科学学报, 2018, 26(6): 1189-1202. |
[ Zhang Yuanyan, Li Tianhong. Soil erosion in Shenzhen city based on GIS and RUSLE model[J]. Journal of Basic Science and Engineering, 2018, 26(6): 1189-1202. ] | |
[19] | Renard K G, Foster G R, Weesies G A, et al. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE)[M]. Washington DC: United States Department of Agriculture, 1997: 143-182. |
[20] |
Mccool D K, Brown L C, Foster G R, et al. Revised slope steepness factor for the universal soil loss equation[J]. Transactions of the ASAE, 1987, 30(5): 1387-1396.
doi: 10.13031/2013.30576 |
[21] |
Liu B Y, Nearing M A, Risse L M. Slope gradient effects on soil loss for steep slopes[J]. Transactions of the ASAE, 1994, 37(6): 1835-1840.
doi: 10.13031/2013.28273 |
[22] | 陈童尧, 贾燕锋, 王佳楠, 等. 基于InVEST模型的祁连山国家级自然保护区土壤保持现状与功能[J]. 干旱区研究, 2020, 37(1): 150-159. |
[ Chen Tongyao, Jia Yanfeng, Wang Jianan, et al. Current situation and function of soil conservation in national nature reserves in the Qilian Mountains based on InVEST model[J]. Arid Zone Research, 2020, 37(1): 150-159. ] | |
[23] | 蔡崇法, 丁树文, 史志华, 等. 应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J]. 水土保持学报, 2000, 14(2): 19-24. |
[ Cai Chongfa, Ding Shuwen, Shi Zhihua, et al. Study of applying USLE and geographical information system IDRISI to predict soil erosion in small watershed[J]. Joumal of Soil and Water Conservation, 2000, 14(2): 19-24. ] | |
[24] | 尹璐. 扎赉诺尔矿区土地利用格局及其土地退化演变分析[D]. 徐州: 中国矿业大学, 2016. |
[ Yin Lu. The Analysis of Land Use and Degradation Changes in Zhalainur Mining Area[D]. Xuzhou: China University of Mining and Technology, 2016. ] | |
[25] | 周平, 蒙吉军. 鄂尔多斯市1988—2000年土壤水力侵蚀与土地利用时空变化关系[J]. 自然资源学报, 2009, 24(10): 1706-1717. |
[ Zhou Ping, Meng Jijun. The temporal and spatial variability relationship of soil water erosion and land use type in Ordos during the period of 1988-2000[J]. Journal of Natural Resources, 2009, 24(10): 1706-1717. ] | |
[26] |
黄婷, 于德永, 乔建民, 等. 内蒙古锡林郭勒盟景观格局变化对土壤保持能力的影响[J]. 资源科学, 2018, 40(6): 1256-1266.
doi: 10.18402/resci.2018.06.15 |
[ Huang Ting, Yu Deyong, Qiao Jianmin, et al. Landscape pattern change and soil conservation in Xilingol League, Inner Mongolia[J]. Resources Science, 2018, 40(6): 1256-1266. ]
doi: 10.18402/resci.2018.06.15 |
|
[27] |
王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
doi: 10.11821/dlxb201701010 |
[ Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134. ]
doi: 10.11821/dlxb201701010 |
|
[28] | 邹雅婧, 闫庆武, 谭学玲, 等. 渭北矿区土壤侵蚀评估及驱动因素分析[J]. 干旱区地理, 2019, 42(6): 1387-1394. |
[ Zou Yajing, Yan Qingwu, Tan Xueling, et al. Evaluation of soil erosion and driving factors analysis in Weibei mining area[J]. Arid Land Geography, 2019, 42(6): 1387-1394. ] | |
[29] | 中华人民共和国水利部. 土壤侵蚀分类分级标准(SL190-2007)[S]. 北京: 中国水利水电出版社, 2008. |
[ Ministry of Water Resources of the People’s Republic of China. Standards for Classification and Gradation of Soil Erosion (SL190-2007)[S]. Beijing: China Water & Power Press, 2008. ] | |
[30] | 刘英, 魏嘉莉, 岳辉, 等. 神东矿区土壤侵蚀时空特征及驱动力分析[J]. 测绘科学, 2022, 47(1): 142-153. |
[ Liu Ying, Wei Jiali, Yue Hui, et al. Analysis on temporal and spatial characteristics and driving factors of soil erosion in Shendong mining area[J]. Science of Surveying and Mapping, 2022, 47(1): 142-153. ] | |
[31] | 张珊珊, 周忠发, 孙小涛, 等. 基于坡度等级的喀斯特山区石漠化与水土流失相关性研究——以贵州省盘县为例[J]. 水土保持学报, 2017, 31(2): 79-86. |
[ Zhang Shanshan, Zhou Zhongfa, Sun Xiaotao, et al. Based on the slope grade of rocky desertification and water and soil loss correlation study in Karst Mountain Area: A case in Panxian county, Guizhou[J]. Journal of Soil and Water Conservation, 2017, 31(2): 79-86. ] |
[1] | QIU Chunxia, LIU Xiaohong, LI Dou, ZHANG Jiamiao, LI Pengfei. Application of airborne LiDAR with fuzzy inference system in soil erosion monitoring on the Loess Plateau [J]. Arid Zone Research, 2024, 41(8): 1331-1342. |
[2] | TANG Kexin, GUO Jianbin, HE Liang, CHEN Lin, WAN Long. Characteristics of the spatial and temporal evolution of Gross Primary Productivity and its influencing factors in China’s drylands [J]. Arid Zone Research, 2024, 41(6): 964-973. |
[3] | LIU Rulong, ZHAO Yuanyuan, CHEN Guoqing, CHI Wenfeng, LIU Zhengjia. Assessment of habitat quality in the Yellow River Basin in Inner Mongolia from 1990 to 2020 [J]. Arid Zone Research, 2024, 41(4): 674-683. |
[4] | WANG Chengwu, YAO Liangjie, WANG Zhoufeng, ZHANG Qiao, XIE Liang. Landscape ecological risk assessment and driving factors analysis in the Three River Source Region from 2000 to 2020 [J]. Arid Zone Research, 2024, 41(11): 1908-1920. |
[5] | QI Runze, PAN Jinghu. Spatial and temporal evolution of ecological vulnerability and its influencing factors in the Hehuang area [J]. Arid Zone Research, 2023, 40(6): 1002-1013. |
[6] | XU Tao, YU Huan, KONG Bo, QIU Xia, HU Mengke, LING Pengfei. Spatial heterogeneity of gravel size in Northern Tibetan Plateau [J]. Arid Zone Research, 2023, 40(2): 292-302. |
[7] | WU Xueqing, ZHANG Lele, GAO Liming, LI Yankun, LIU Xuanchen. Dynamic change and driving force of net primary productivity in Qinghai Lake Basin [J]. Arid Zone Research, 2023, 40(11): 1824-1832. |
[8] | ZHENG Xinru, WANG Shusen, WANG Bo, ZHANG Xin, LIU Jing, HU Jinghua, LI Shiwen, YUAN Yanan, WANG Yabo. Simulated soil erosion stress effect on physiological and growth characteristics of Artemisia ordosica at coal mining subsidence areas [J]. Arid Zone Research, 2023, 40(11): 1806-1814. |
[9] | WANG Qikun,WU Wei,YANG Xueqi,SANG Guoqing. Spatial-temporal changes and driving factors of habitat quality in Shaanxi Province during the past 20 years [J]. Arid Zone Research, 2022, 39(5): 1684-1694. |
[10] | YUAN Limin,YANG Zhiguo,XUE Bo,GAO Haiyan,HAN Zhaorigetu. Heterogeneity of soil moisture of blowouts in HulunBuir grassland [J]. Arid Zone Research, 2022, 39(5): 1598-1606. |
[11] | LIU Chang,ZHANG Hong,ZHANG Xiaoyu,YANG Guoting,LIU Yong. Spatio-temporal evolution and prediction of land use in semi-arid mining areas [J]. Arid Zone Research, 2022, 39(1): 292-300. |
[12] | Pariha Helili,ZAN Mei,Alimjan Kasim. Remote sensing evaluation of ecological environment in Urumqi City and analysis of driving factors [J]. Arid Zone Research, 2021, 38(5): 1484-1496. |
[13] | CHANG Mengdi,WANG Xinjun,LI Na,YAN Linan,MA Ke,LI Juyan. Study on temporal and spatial variation characteristics and influencing factors of hydraulic erosion in the middle of the northern slope of Tianshan Mountains based on CSLE model [J]. Arid Zone Research, 2021, 38(4): 939-949. |
[14] | . Response relationship between micro-relief variation and slope erosion under sand-covered conditions [J]. Arid Zone Research, 2020, 37(3): 757-. |
[15] | ZHANG Wei, LI Jing. Value of Water and Soil Conservation in Land Ecosystem in the Guanzhong-Tianshui Economic Zone [J]. , 2013, 30(6): 1136-1143. |
|