Arid Zone Research ›› 2022, Vol. 39 ›› Issue (5): 1543-1554.doi: 10.13866/j.azr.2022.05.19
• Land and Water Resources • Previous Articles Next Articles
YANG Haijiao1(),WEI Jiahua1,2(),REN Qianhui1
Received:
2022-03-17
Revised:
2022-05-27
Online:
2022-09-15
Published:
2022-10-25
Contact:
Jiahua WEI
E-mail:yyeezzii@163.com;weijiahua@tsinghua.edu.cn
YANG Haijiao,WEI Jiahua,REN Qianhui. Interaction between surface water and groundwater and hydrochemical characteristics in the typical watersheds of the Qaidam Basin[J].Arid Zone Research, 2022, 39(5): 1543-1554.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Overview of the typical rivers and number of samples in the Qaidam Basin"
序号 | 河流 | 聚类 | 区位 | 集水 面积 | 年平均 径流量 | 补给类型 | 用水类型 | 样品数 | ||
---|---|---|---|---|---|---|---|---|---|---|
/km2 | /108 m3 | 河水 | 湖水 | 地下水 | ||||||
a | 鱼卡河 | Ⅰ | 北 | 2139 | 0.991 | 降水-融水-地下水 | 灌溉、生产 | 9 | - | 26 |
b | 巴音河 | Ⅱ | 东北 | 7281 | 3.524 | 降水-地下水 | 灌溉、生活 | 22 | 2 | 38 |
c | 格尔木河 | Ⅲ | 南 | 18648 | 7.973 | 降水-融水-地下水 | 灌溉、生产 | 14 | 1 | 16 |
d | 香日德河 | Ⅳ | 东南 | 12339 | 1.379 | 降水-地下水 | 灌溉 | 13 | - | 23 |
e | 察汗乌苏河 | Ⅴ | 东 | 4434 | 1.703 | 融水-地下水 | 灌溉 | 5 | - | 16 |
Tab. 2
Chemical characteristic parameter of river, GW and lake in the typical watersheds of the Qaidam Basin"
所属流域 /湖泊 | 鱼卡河 | 巴音河 | 格尔木河 | 香日德河 | 察汗乌苏河 | 巴音河 尾闾湖 | 格尔木河 尾闾湖 |
---|---|---|---|---|---|---|---|
Mean±SD | Mean±SD | Mean±SD | Mean±SD | Mean±SD | Mean±SD | Value | |
pH | 8.46±0.45 | 8.19±0.35 | 8.65±0.52 | 8.39±0.45 | 8.23±0.34 | 8.92±0.32 | 7.16 |
TDS | 462.14±210.07 | 654.54±617.9 | 748.21±402.05 | 689.86±189.61 | 1122.99±201.3 | 8409.6±8903.31 | 124728.06 |
Ca2+ | 47.87±19.54 | 66.03±30.5 | 43.02±24.96 | 62.87±23.71 | 111.36±21.07 | 35.71±21.26 | 3290.00 |
K+ | 3.88±2.39 | 4.84±8.42 | 6.29±4.61 | 5.99±2.08 | 7.43±0.81 | 62.3±66.95 | 3248.00 |
Mg2+ | 17.39±13.02 | 30.93±25.18 | 41.06±22.4 | 34.86±9.85 | 24.58±5.63 | 468.14±502.35 | 48900.00 |
Na+ | 92.55±63.9 | 125.96±179.58 | 142.24±104.79 | 122.63±35.94 | 260.25±71.05 | 2726.5±3000.35 | 81780.00 |
Cl- | 129.81±95.57 | 171.92±220.05 | 262.31±213.45 | 189.64±68.95 | 547.7±220.82 | 4564.24±4029.61 | 1365299.80 |
| 137.89±119.87 | 172.25±188.92 | 235.8±282.89a | 241.86±112.05 | 332.51±152.27 | 3268.14±2870.92 | 38013.20 |
| 0.77±3.18 | 0.14±1.09 | 2.82±7.27 | 1.34±3.87 | 0.00 | 66.67±115.48 | 0.00 |
| 142.05±45.94 | 182.99±54.88 | 178.91±59.17 | 196.43±61 | 180.84±55.64 | 427.57±274.77 | 707.80 |
F- | 1.31±3.65 | 0.78±2.99 | 0.36±0.55 | 0.44±0.49 | 0.7±0.93 | 0.44±0.18 | 6.29 |
| 3.56±5.02 | 12.62±23.9 | 19.64±63.61 | 8.83±10.23 | 11.18±9.09 | 1.88±0.89 | 66.81 |
Tab. 3
Rotated component matrix and extraction sums of hydrochemical factor loadings of SW and GW in the typical watersheds of the Qaidam Basin"
因子 | 鱼卡河 | 巴音河 | 格尔木河 | 香日德河 | 察汗乌苏河 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fa1 | Fa2 | Fa3 | Fb1 | Fb2 | Fc1 | Fc2 | Fd1 | Fd2 | Fd3 | Fe1 | Fe2 | Fe3 | Fe4 | |||||||
TDS | 0.961* | 0.144 | 0.121 | 0.989* | 0.119 | 0.95* | -0.049 | 0.936* | -0.020 | 0.047 | 0.873* | -0.144 | 0.166 | 0.299 | ||||||
pH | -0.512 | 0.744* | 0.027 | 0.342 | -0.601 | -0.535 | -0.492 | -0.823 | 0.241 | -0.028 | -0.435 | 0.430 | 0.306 | 0.340 | ||||||
Cl- | 0.843* | 0.384 | 0.085 | 0.982* | -0.036 | 0.995* | -0.052 | 0.388 | 0.476 | -0.722 | 0.525 | -0.290 | 0.527 | -0.442 | ||||||
| 0.896* | 0.190 | 0.052 | 0.983* | -0.013 | 0.995* | -0.050 | 0.870* | 0.182 | -0.312 | 0.754* | 0.489 | 0.010 | -0.305 | ||||||
| 0.581 | -0.541 | 0.020 | 0.873* | 0.087 | 0.891* | 0.069 | 0.669* | -0.506 | 0.231 | 0.320 | 0.824* | 0.127 | 0.263 | ||||||
Ca2+ | 0.631* | -0.522 | 0.100 | -0.149 | 0.920* | 0.996* | -0.035 | 0.845* | -0.226 | -0.249 | 0.832* | -0.201 | 0.143 | 0.100 | ||||||
K+ | 0.482 | 0.627* | -0.079 | 0.989* | 0.012 | 0.995* | -0.052 | 0.588 | 0.428 | 0.463 | 0.592 | -0.510 | -0.161 | 0.311 | ||||||
Mg2+ | 0.888* | -0.218 | -0.127 | 0.993* | 0.052 | 0.995* | -0.052 | 0.910* | -0.214 | 0.185 | 0.875* | 0.209 | -0.201 | 0.217 | ||||||
Na+ | 0.676* | 0.506 | 0.179 | 0.992* | 0.080 | 0.995* | -0.051 | 0.828* | 0.349 | 0.201 | 0.792* | -0.062 | 0.365 | 0.280 | ||||||
| 0.750* | -0.087 | -0.283 | 0.009 | 0.893* | 0.156 | 0.056 | 0.798* | 0.315 | 0.079 | 0.672* | 0.227 | -0.119 | -0.663 | ||||||
F- | -0.058 | -0.118 | 0.927 | 0.079 | 0.602* | 0.006 | 0.912* | -0.341 | 0.572 | 0.377 | 0.480 | 0.032 | -0.819 | 0.064 | ||||||
特征值 | 5.480 | 2.041 | 1.029 | 6.764 | 2.401 | 8.034 | 1.098 | 6.234 | 1.403 | 1.175 | 5.016 | 1.607 | 1.321 | 1.237 | ||||||
贡献率/% | 49.818 | 18.554 | 9.356 | 61.491 | 21.823 | 73.035 | 9.984 | 56.677 | 12.757 | 10.680 | 45.597 | 14.608 | 12.013 | 11.246 | ||||||
累计贡献率/% | 49.818 | 68.372 | 77.728 | 61.491 | 83.314 | 73.035 | 83.019 | 56.677 | 69.434 | 80.114 | 45.597 | 60.205 | 72.218 | 83.464 |
[1] |
Tomas B F, Caineta J, Nanteza J. Global assessment of groundwater sustainability based on storage anomalies[J]. Geophysical Research Letters, 2017, 44(22): 11445.
doi: 10.1002/2017GL076005 |
[2] | 徐威. 那棱格勒河冲洪积平原地下水循环模式及其对人类活动的响应研究[D]. 长春: 吉林大学, 2015. |
[Xu Wei. Groundwater Cycle Patterns and Its Response to Human Activities in Nalenggele Alluvial-proluvial Plain[D]. Changchun: Jilin University, 2015. ] | |
[3] |
Lambs L. Interactions between groundwater and surface water at river banks and the confluence of rivers[J]. Journal of Hydrology, 2004, 288(3): 312-326.
doi: 10.1016/j.jhydrol.2003.10.013 |
[4] |
Kalbus E, Reinstorf F, Schirmer M. Measuring methods for groundwater, surface water and their interactions: A review[J]. Hydrology and Earth System Sciences, 2006, 10(6): 873-887.
doi: 10.5194/hess-10-873-2006 |
[5] |
Steelman C M, Kennedy C S, Donovan C, et al. Electrical resistivity dynamics beneath a fractured sedimentary bedrock riverbed in response to temperature and groundwater-surface water exchange[J]. Hydrology and Earth System Sciences, 2017, 21(6): 3105-3123.
doi: 10.5194/hess-21-3105-2017 |
[6] |
Kumar M, Ramanathan A, Keshari A K. Understanding the extent of interactions between groundwater and surface water through major ion chemistry and multivariate statistical techniques[J]. Hydrological Processes, 2009, 23(2): 297-310.
doi: 10.1002/hyp.7149 |
[7] |
李健, 王建军, 黄勇, 等. 青海德令哈市巴音河流域水资源开发利用[J]. 干旱区研究, 2009, 26(4): 483-489.
doi: 10.3724/SP.J.1148.2009.00483 |
[Li Jian, Wang Jianjun, Huang Yong, et al. Analysis on the exploitation and utilization of water resources in the Bayin River watershed, Delingha city, Qinghai Province[J]. Arid Zone Research, 2009, 26(4): 483-489. ]
doi: 10.3724/SP.J.1148.2009.00483 |
|
[8] |
Liu W G, Xiao Y L, Wang H P, et al. Chlorine isotopic geochemistry of salt lakes in the Qaidam Basin, China[J]. Chemical Geology, 1997, 136: 271-279.
doi: 10.1016/S0009-2541(96)00134-9 |
[9] |
Lowenstein T K, Risacher F. Closed basin brine evolution and the influence of Ca- Cl inflow waters: Death Valley and Bristol dry lake California, Qaidam Basin, China, and Salar de Atacama, Chile[J]. Aquatic Geochemistry, 2009, 15(1): 71-94.
doi: 10.1007/s10498-008-9046-z |
[10] | 李文鹏, 何庆成. 察尔汗盐湖物质来源的讨论[J]. 河北地质学院学报, 1993, 16(3): 254-263. |
[Li Wenpeng, He Qingcheng. Discussion on the origins of the material in Qarhan Salt Lake[J]. Journal of Hebei College of Geology, 1993, 16(3): 254-263. ] | |
[11] | 李文鹏, 周宏春, 周仰效, 等. 中国西北典型干旱区地下水流系统[M]. 北京: 地震出版社, 1995: 1-24. |
[Li Wenpeng, Zhou Hongchun, Zhou Yangxiao, et al. Groundwater Flow System in Typical Arid Area of Northwest China[M]. Beijing: Seismological Press, 1995: 1-24. ] | |
[12] |
Tan H B, Rao W B, Chen J S, et al. Chemical and isotopic approach to groundwater cycle in western Qaidam Basin, China[J]. Chinese Geographical Science, 2009, 19(4): 357-364.
doi: 10.1007/s11769-009-0357-9 |
[13] |
Zhao D, Wang G C, Liao F, et al. Groundwater-surface water interactions derived by hydrochemical and isotopic (222Rn, deuterium, oxygen-18) tracers in the Nomhon area, Qaidam Basin, NW China[J]. Journal of Hydrology, 2018, 565: 650-661.
doi: 10.1016/j.jhydrol.2018.08.066 |
[14] | 文广超, 王文科, 段磊, 等. 基于水化学和稳定同位素定量评价巴音河流域地表水与地下水转化关系[J]. 干旱区地理, 2018, 41(4): 734-743. |
[Wen Guangchao, Wang Wenke, Duan Lei, et al. Quantitatively evaluating exchanging relationship between river water and groundwater in Bayin River Basin of Northwest China using hydrochemistry and stable isotope[J]. Arid Land Geography, 2018, 41(4): 734-743. ] | |
[15] |
Xiao Y, Shao J L, Cui Y L, et al. Groundwater circulation and hydrogeochemical evolution in Nomhon of Qaidam Basin, Northwest China[J]. Journal of Earth System Science, 2017, 126(26): 1-26.
doi: 10.1007/s12040-016-0788-5 |
[16] | 肖勇. 柴达木盆地南缘地下水循环演化模式及其变化趋势研究[D]. 北京: 中国地质大学(北京), 2018. |
[Xiao Yong. Groundwater Circulation Patterns and Iits Change Trending Southern Qaidam Basin, Northwest China[D]. Beijing: China University of Geosciences (Beijing), 2018. ] | |
[17] | 王永贵, 郭宏业, 李健, 等. 柴达木盆地地下水资源及其环境问题调查评价[M]. 北京: 地质出版社, 2008: 49-211. |
[Wang Yonggui, Guo Hongye, Li Jian, et al. Investgation and Assessment of Groundwater Resources and Their Environmental Issues in the Qaidam Basin[M]. Beijing: Geological Publishing House, 2008: 49-211. ] | |
[18] | 赵振, 刘振英, 许伟林, 等. 青海省德令哈市巴音河冲洪积扇供水水文地质详查报告[R]. 西宁:青海省环境地质勘查局, 2017. |
[Zhao Zhen, Liu Zhenying, Xu Weilin, et al. Hydrogeological Survey of alluvial Fan Water Supply in Bayin River, Delingha City, Qinghai Province[R]. Xining: Qinghai Environmental Geology Exploration Bureau, 2017. ] | |
[19] | 党学亚, 张戈, 顾小凡, 等.柴达木盆地格尔木河—巴音河流域1:5 万水文地质调查报告[R]. 西安: 中国地质调查局西安地质调查中心, 2016. |
[Dang Xueya, Zhang Ge, Gu Xiaofan, et al. A 1:50000 Hydrogeological Survey in Golmud-Bayin River Basin, Qaidam Basin[R]. Xi’an: Xi’an Geological Survey Center, China Geological Survey, 2016. ] | |
[20] | 张雨航. 柴达木盆地蒸散量的估算及其影响因素分析[D]. 北京: 中国地质大学(北京), 2012. |
[Zhang Yuhang. Evapotranspiration Estimation of Qaidam Basin and Its Impact Factors[D]. Beijing: China University of Geosciences (Beijing), 2012. ] | |
[21] | 范梦歌, 刘九夫. 基于聚类分析的水文相似流域研究[J]. 水利水运工程学报, 2015(4): 106-111. |
[Fan Mengge, Liu Jiufu. Analysis of hydrologically similar basins based on clustering analysis[J]. Hydro-Science and Engineering, 2015(4): 106-111.] | |
[22] | 王瑞久. 三线图解及其水文地质解释[J]. 工程勘察, 1983(6): 6-11. |
[Wang Ruijiu. Piper ternary and its hydrogeological interpretation[J]. Engineering Investigation, 1983(6): 6-11. ] | |
[23] |
Gibbs R J. Mechanisms controlling world water chemistry[J]. Science, 1970, 170(3962): 1088-1090.
pmid: 17777828 |
[24] | 张春潮, 侯新伟, 李向全, 等. 三姑泉域岩溶地下水水化学特征及形成变化机制[J]. 水文地质工程地质, 2021, 48(3): 62-71. |
[Zhang Chunchao, Hou Xinwei, Li Xiangquan, et al. Hydrogeochemical characteristics and evolution mechanism of karst groundwater in the catchment area of the Sangu Spring[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 62-71. ] | |
[25] | 魏忠义, 汤奇成. 西北干旱区地表水与地下水相互转化及总水资源的计算[J]. 干旱区资源与环境, 1997, 11(4): 2-8. |
[Wei Zhongyi, Tang Qicheng. Interaction between surface water and groundwater resources and calculation of total amount of water resources in the arid zone of Northwest China[J]. Journal of Arid Land Resources and Environment, 1997, 11(4): 2-8. ] | |
[26] | 杨绍康, 秦光雄, 贾君, 等.柴达木盆地都兰县幅、夏日哈幅1:5 万水文地质调查报告[R]. 西宁: 青海省环境地质勘查局, 2016. |
[Yang Shaokang, Qin Guangxiong, Jia Jun, et al. A 1: 50000 Hydrogeological Survey Report of Dulan County and Xiariha Mappable Unit in Qaidam Basin[R]. Xining: Qinghai Environmental Geology Exploration Bureau, 2016. ] | |
[27] | 张文琦, 董少刚, 马铭言, 等. 岱海盆地地下水化学特征及成因[J]. 干旱区研究, 2021, 38(6): 1546-1555. |
[Zhang Wenqi, Dong Shaogang, Ma Mingyan, et al. Chemical characteristics and origin of groundwater in the Daihai basin[J]. Arid Zone Research, 2021, 38(6): 1546-1555. ] | |
[28] | 王宇航. 格尔木河流域地下水化学演化规律和水循环模式[D]. 西安: 长安大学, 2014. |
[Wang Yuhang. Geochemistry Evolution and Water Cycle Patterns of Groundwater in Golmud River Basin[D]. Xi’an: Chang’an University, 2014. ] | |
[29] | 白凡, 周金龙, 曾妍妍. 吐鲁番盆地平原区地下水水化学特征及水质评价[J]. 干旱区研究, 2022, 39(2): 419-428. |
[Bai Fan, Zhou Jinlong, Zeng Yanyan. Hydrochemical characterist ics and quality of groundwater in the plains of the Turpan Basin[J]. Arid Zone Research, 2022, 39(2): 419-428. ] |
[1] | HUI Rong, TAN Huijuan, HUANG Lei, LI Xinrong. Characteristics of nutrient and enzyme activity in salt-affected soils of the Qaidam Basin [J]. Arid Zone Research, 2023, 40(11): 1776-1784. |
[2] | DING Qizhen,LEI Mi,ZHOU Jinlong,ZHANG Jie,XU Dongsheng. An assessment of groundwater, surface water, and hydrochemical characteristics in the upper valley of the Bortala River [J]. Arid Zone Research, 2022, 39(3): 829-840. |
[3] | WEN Guangchao,LI Xing,WU Bingjie,WANG Xiaohe,XIE Hongbo. An automatic method for delineating lake surfaces in Qaidam Basin using Landsat images [J]. Arid Zone Research, 2022, 39(3): 774-786. |
[4] | BAI Fan,ZHOU Jinlong,ZENG Yanyan. Hydrochemical characteristics and quality of groundwater in the plains of the Turpan Basin [J]. Arid Zone Research, 2022, 39(2): 419-428. |
[5] | ZHANG Wenqi,DONG Shaogang,MA Mingyan,ZHAO Zhen,CHEN Yue. Chemical characteristics and origin of groundwater in the Daihai basin [J]. Arid Zone Research, 2021, 38(6): 1546-1555. |
[6] | CHEN Jing,GUO Xiaoning,BAI Wenjuan,WEN Xia,YANG Yanhua. Spatiotemporal characteristics and influencing factors of dust weather in Qaidam Basin in recent 60 years [J]. Arid Zone Research, 2021, 38(4): 1040-1047. |
[7] | LIU Yihua,LI Hongmei,WEN Tingting,SHEN Hongyan,HANG Zhongquan,ZHU Baowen. Risk zoning of summer rainstorm disaster and its influence in Qaidam Basin [J]. Arid Zone Research, 2021, 38(3): 757-763. |
[8] | Maerhubai Yasheng,MA Long,Jilili Abuduwaili,ZHANG Weiyan. Hydrochemical characteristics and their influence on rivers in the Western part of the Tianshan Mountains, Xinjiang, China [J]. Arid Zone Research, 2021, 38(3): 600-609. |
[9] | Ailihamu Aikelamu,ZHOU Jinlong,ZHANG Jie,WEI Xing,YU Dong,CHEN Jinsong. Chemical characteristics and genesis analysis of groundwater in northwest Yili River Valley [J]. Arid Zone Research, 2021, 38(2): 504-512. |
[10] | ZENG Xiaoxian,ZENG Yanyan,ZHOU Jinlong,LEI Mi,SUN Ying. Hydrochemical characteristics and cause analysis of the shallow groundwater in Shihezi City [J]. Arid Zone Research, 2021, 38(1): 68-75. |
[11] | . Hydrogeochemical processes of groundwater formation in the Kashgar River Basin,Xinjiang [J]. Arid Zone Research, 2020, 37(3): 541-. |
[12] | ZHANG Wang-xiong, LIU Pu-xing. Surface Humid Situation and Its Affecting Factors in the Qaidam Basin from 1961 to 2017 [J]. Arid Zone Research, 2019, 36(6): 1391-1400. |
[13] | . Spatiotemporal Variation of Drought in the Qaidam Basin [J]. , 2018, 35(2): 387-394. |
|