Arid Zone Research ›› 2024, Vol. 41 ›› Issue (6): 1032-1044.doi: 10.13866/j.azr.2024.06.12
• Ecology and Environment • Previous Articles Next Articles
DONG Pengbei1(), REN Zongping1(), LI Peng1, WANG Kaibo2, HE Guokai1, WANG Pu1
Received:
2023-12-04
Revised:
2024-02-28
Online:
2024-06-15
Published:
2024-07-03
DONG Pengbei, REN Zongping, LI Peng, WANG Kaibo, HE Guokai, WANG Pu. Ecosystem services trade-offs and synergies drived by landuse changes in Ningxia[J].Arid Zone Research, 2024, 41(6): 1032-1044.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 2
Data sources"
数据类型 | 年份 | 分辨率 | 数据来源 |
---|---|---|---|
气象数据 | 2020年 | 1 km | 中国地面气候资料日值数据集(V3.0) |
地形数据 | - | 30 m | 地理空间数据云( |
植被数据 | 2020年 | 1 km | 中国科学院资源与环境数据中心( |
土壤数据 | - | 1 km | 中国科学院资源与环境数据中心( |
土地利用数据 | 2020年 | 30 m | 中国科学院资源与环境数据中心( |
社会经济数据 | 2020年 | - | 宁夏统计年鉴 |
基础国情数据 | - | - | 中国科学院资源与环境数据中心( |
Tab. 3
Area of landuse types in Ningxia"
土地利用类型 | 现状 | 自然情景 | 耕地保护情景 | 生态保护情景 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
面积/104 km2 | 占比/% | 面积/104 km2 | 占比/% | 面积/104 km2 | 占比/% | 面积/104 km2 | 占比/% | ||||
耕地 | 1.8 | 34.6 | 1.8 | 34.6 | 1.8 | 35.0 | 1.8 | 33.8 | |||
林地 | 0.3 | 5.3 | 0.3 | 5.3 | 0.3 | 5.1 | 0.3 | 5.7 | |||
草地 | 2.3 | 44.4 | 2.3 | 44.2 | 2.3 | 44.1 | 2.3 | 45.1 | |||
水域 | 0.1 | 2.0 | 0.1 | 1.9 | 0.1 | 1.9 | 0.1 | 1.9 | |||
建设用地 | 0.2 | 4.2 | 0.2 | 4.6 | 0.2 | 4.4 | 0.2 | 4.2 | |||
未利用地 | 0.5 | 9.5 | 0.5 | 9.4 | 0.5 | 9.4 | 0.5 | 9.3 |
[1] | Robert C. Valuing natural capital and ecosystem services toward the goals of efficiency, fairness, and sustainability[J]. Ecosystem Services, 2020, 43: 101096. |
[2] | 王晓峰, 吕一河, 傅伯杰. 生态系统服务与生态安全[J]. 自然杂志, 2012, 34(5): 273-276. |
[Wang Xiaofeng, Lv Yihe, Fu Bojie. Ecosystem services and ecological security[J]. Chinese Journal of Nature, 2012, 34(5): 273-236. ] | |
[3] | 孙艺杰, 任志远, 郝梦雅, 等. 黄土高原生态系统服务权衡与协同时空变化及影响因素——以延安市为例[J]. 生态学报, 2019, 39(10): 3443-3454. |
[Sun Yijie, Ren Zhiyuan, Hao Mengya, et al. Spatial and temporal changes in the synergy and trade-off between ecosystem services, and its influencing factors in Yanan, Loess Plateau[J]. Acta Ecologica Sinica, 2019, 39(10): 3443-3454. ] | |
[4] | Ilse R G, Berta M, Philip K Roche. Improving the identification of mismatches in ecosystem services assessments[J]. Ecological Indicators, 2015, 52: 320-331. |
[5] | Jiang W J, Guo P P, Lin Z M, et al. Factors influencing the spatiotemporal variation in the value of ecosystem services in Anxi county[J]. Heliyon, 2023, 9(8): e19182. |
[6] | Yu F, Li C L, Yuan Z Q, et al. How do mountain ecosystem services respond to changes in vegetation and climate? An evidence from the Qinling Mountains, China[J]. Ecological Indicators, 2023, 154: 110922. |
[7] | Suchana A, Tomoharu H, Saroj K. Assessing the spatio-temporal impact of landuse landcover change on water yield dynamics of rapidly urbanizing Kathmandu valley watershed of Nepal[J]. Journal of Hydrology: Regional Studies, 2023, 50: 101562. |
[8] | Peng J, Tian L, Zhang Z M, et al. Distinguishing the impacts of land use and climate change on ecosystem services in a karst landscape in China[J]. Ecosystem Services, 2020, 46: 101199. |
[9] | 罗丹, 周忠发, 陈全, 等. 喀斯特地区碳储量对土地利用模式的响应——以南北盘江流域为例[J]. 生态学报, 2023, 43(9): 3500-3516. |
[Luo Dan, Zhou Zhongfa, Chen Quan, et al. Responses of carbon storage to land use pattern in karst area: A case study of Nanbei Panjiang River Basin[J]. Acta Ecologica Sinica, 2023, 43(9): 3500-3516. ] | |
[10] | Petroni Maria Luiza, Siqueira-Gay Juliana, Gallardo Amarilis Lucia Casteli Figueiredo. Understanding land use change impacts on ecosystem services within urban protected areas[J]. Landscape and Urban Planning, 2022, 223: 104404. |
[11] | Pedro C, Clément F, Harold L, et al. Assessing the impact of land-cover changes on ecosystem services: A first step toward integrative planning in Bordeaux, France[J]. Ecosystem Services, 2016, 22: 318-327. |
[12] | Erik Gómez-Baggethun, Marian Tudor, Mihai Doroftei, et al. Changes in ecosystem services from wetland loss and restoration: An ecosystem assessment of the Danube Delta (1960-2010)[J]. Ecosystem Services, 2019, 39: 100965. |
[13] | 姚礼堂, 张学斌, 周亮, 等. “山地-绿洲-荒漠”复合系统土地利用变化的生态系统服务权衡与协同效应——以张掖市为例[J]. 生态学报, 2022, 42(20): 8138-8151. |
[Yao Litang, Zhang Xuebin, Zhou Liang, et al. Ecosystem service tradeoffs and synergies effects of land use change in Mountain-Oasis-Desert complex system: A case studly of Zhangye City[J]. Acta Ecologica Sinica, 2022, 42(20): 8138-8151. ] | |
[14] | Tan C P, Yang J P, Wang X M, et al. Drought disaster risks under CMIP5 RCP scenarios in Ningxia Hui Autonomous Region, China[J]. Natural Hazards, 2020, 100(3): 909-931. |
[15] | Yang P, Zhai X Y, Huang H Q, et al. Association and driving factors of meteorological drought and agricultural drought in Ningxia, Northwest China[J]. Atmospheric Research, 2023, 289: 106753. |
[16] | 潘金金, 任宗萍, 胥世斌, 等. 宁夏不同植被类型NDVI变化特征及其对气候的响应[J]. 地球科学与环境学报, 2023, 45(4): 819-832. |
[Pan Jinjin, Ren Zongping, Xu Shibin, et al. Variation characteristics of NDVl of different vegetation types in Ningxia, China and their responses to climate[J]. Journal of Earth Sciences and Environment, 2023, 45(4): 819-832. ] | |
[17] | 祁迷, 王飞, 滑永春, 等. 基于PLUS与InVEST模型的内蒙古自治区土地利用变化及碳储量评估[J]. 水土保持学报, 2023, 37(6): 194-200. |
[Qi Mi, Wang Fei, Hua Yongchun, et al. Assessment of landuse change and carbon storage in Inner Mongolia Autonomous Region based on PLUS and InVEST models[J]. Journal of Soil and Water Conservation, 2023, 37(6): 194-200. ] | |
[18] | Alam S A, Starr Mike R, Clark Barnaby J F. Tree biomass and soil organic carbon densities across the Sudanese woodland savannah: A regional carbon sequestration study[J]. Journal of Arid Environments, 2013, 89: 67-76. |
[19] | 陈光水, 杨玉盛, 刘乐中, 等. 森林地下碳分配(TBCA)研究进展[J]. 亚热带资源与环境学报, 2007(1): 34-42. |
[Chen Guangshui, Yang Yusheng, Liu Lezhong, et al. Research review on total below ground carbon allocation in forest ecosystems[J]. Journal of Subtropical Resources and Environment, 2007(1): 34-42. ] | |
[20] | 申草, 任宗萍, 李鹏, 等. 宁夏水土保持生态补偿优先区识别[J]. 干旱区研究, 2023, 40(9): 1527-1536. |
[Shen Cao, Ren Zongping, Li Peng, et al. ldentification of priority areas for ecological compensation under soil and water conservation in Ningxia[J]. Arid Zone Research, 2023, 40(9): 1527-1536. ] | |
[21] | Wang X Y, Peng J, Luo Y H, et al. Exploring social-ecological impacts on trade-offs and synergies among ecosystem services[J]. Ecological Economics, 2022, 197: 107438. |
[22] | Li X, Fu J Y, Jiang D, et al. Land use optimization in Ningbo City with a coupled GA and PLUS model[J]. Journal of Cleaner Production, 2022, 375: 134004. |
[23] | Wu F, Liang Y J, Peng S Z, et al. Challenges in trade-off governance of ecosystem services: Evidence from the Loess Plateau in China[J]. Ecological Indicators, 2022, 145: 109686. |
[24] | Xia H, Yuan S F, Prishchepov A V. Spatial-temporal heterogeneity of ecosystem service interactions and their social-ecological drivers: Implications for spatial planning and management[J]. Resources, Conservation and Recycling, 2023, 189: 106767. |
[25] | Vuong H P, Sperotto A, Torresan S, et al. Coupling scenarios of climate and land-use change with assessments of potential ecosystem services at the river basin scale[J]. Ecosystem Services, 2019, 40: 101045. |
[26] | Pan Q, Wen Z, Wu T, et al. Trade-offs and synergies of forest ecosystem services from the perspective of plant functional traits: A systematic review[J]. Ecosystem Services, 2022, 58: 101484. |
[27] | Liao Q, Li T, Wang Q Y, et al. Exploring the ecosystem services bundles and influencing drivers at different scales in southern Jiangxi, China[J]. Ecological Indicators, 2023, 148: 110089. |
[28] | Qiu J X, Carpenter S R, Booth E G, et al. Understanding relationships among ecosystem services across spatial scales and over time[J]. Environmental Research Letters, 2018, 13(5): 1-15. |
[29] | Zhao M M, He Z B, Du J, et al. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models[J]. Ecological Indicators, 2019, 98: 29-38. |
[30] | Hu B A, Wu H F, Han H R, et al. Dramatic shift in the drivers of ecosystem service trade-offs across an aridity gradient: Evidence from China’s Loess Plateau[J]. Science of the Total Environment, 2023, 858: 159836. |
[31] | Benton T G, Bailey R, Froggatt A, et al. Designing sustainable landuse in a 1.5 °C world: the complexities of projecting multiple ecosystem services from land[J]. Current Opinion in Environmental Sustainability, 2018, 31: 88-95. |
[32] | Wang H H, Yue C, Mao Q Q, et al. Vegetation and species impacts on soil organic carbon sequestration following ecological restoration over the Loess Plateau, China[J]. Geoderma, 2020, 371: 114389. |
|