Arid Zone Research ›› 2024, Vol. 41 ›› Issue (11): 1969-1980.doi: 10.13866/j.azr.2024.11.16
• Agricultural Ecology • Previous Articles
XING Xinran1(), ZHANG Yi1(), LI Peng2, LIU Xiaojun3, TAO Qingrui4, REN Zhengyan4, XU Shibin5
Received:
2024-04-21
Revised:
2024-06-12
Online:
2024-11-15
Published:
2024-11-29
Contact:
ZHANG Yi
E-mail:13099525526@163.com;yzhang026@nxu.edu.cn
XING Xinran, ZHANG Yi, LI Peng, LIU Xiaojun, TAO Qingrui, REN Zhengyan, XU Shibin. Simulated effects of soil enzyme activity on soil organic carbon mineralization in dam land under dry and wet conditions[J].Arid Zone Research, 2024, 41(11): 1969-1980.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 2
Types of soil enzyme activities their abbreviations, substrate and functions"
土壤酶 | 缩写 | 底物 | 类型 | 功能 |
---|---|---|---|---|
β-葡萄糖苷酶 | BG | 4-MUB-β-D-glucoside | C-targeting h ydrolytic | 碳循环酶 |
木糖苷酶 | EC | 4-Methylumbelliferone-β-D-xylopyranoside | C-targeting hydrolytic | 碳循环酶 |
纤维素水解酶 | EG | 4-Methylumbelliferyl-Beta-D-cellobiopyranoside | C-targeting hydrolytic | 碳循环酶 |
β-N-乙酰氨基葡萄糖苷酶 | NAG | β-N-Acetylglucosaminidase | N-targeting hydrolytic | 氮循环酶 |
亮氨酸酶 | LAP | L-Leucine-7-amido-4-methylcoumarin hydrochloride | N-targeting hydrolytic | 氮循环酶 |
磷酸酶 | AP | 4-Methylumbelliferyl phosphate | P-targeting hydrolytic | 磷循环酶 |
[1] | 周波涛. 全球气候变暖: 浅谈从AR5到AR6的认知进展[J]. 大气科学学报, 2021, 44(5): 667-671. |
[Zhou Botao. Global warming: scientific progress from AR5 to AR6[J]. Transactions of Atmospheric Sciences, 2021, 44(5): 667-671. ] | |
[2] | Halverson J L, Jones M T, Firestone K M. Release of intracellular solutes by four soil bacteria exposed to dilution stress[J]. Soil Science Society of America Journal, 2000, 64(5): 1630-1637. |
[3] |
Joshua S C T B, Matthew W. Microbial stress-response physiology and its implications for ecosystem function[J]. Ecology, 2007, 88(6): 1386-94.
doi: 10.1890/06-0219 pmid: 17601131 |
[4] | Chang E H, Chen T H, Tian G L. The effect of altitudinal gradient on soil microbial community activity and structure in moso bamboo plantations[J]. Ecology Environment & Conservation, 2016. |
[5] | Davidson A E, Janssens A I. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature: International Weekly Journal of Science, 2006, 440(Suppl. ): 165-173. |
[6] | 刘峰, 赵鹏程, 张昀, 等. 微生物角度揭示气候变暖对土壤有机碳转化影响的研究综述[J]. 土壤通报, 2022, 53(6): 1492-1498. |
[Liu Feng, Zhao Pengcheng, Zhang Yun, et al. Effects of climate warming on soil organic carbon storage from the viewpoint of Soil Microorganism[J]. Chinese Journal of Soil Science, 2022, 53(6): 1492-1498. ] | |
[7] |
Sinsabaugh R L, Lauber C L, Weintraub M N, et al. Stoichiometry of soil enzyme activity at global scale[J]. Ecology Letters, 2008, 11(11): 1252-1264.
doi: 10.1111/j.1461-0248.2008.01245.x pmid: 18823393 |
[8] | 张睿媛, 袁丹, 秦树平, 等. 碳氮磷化学计量比对土壤有机碳矿化激发效应的影响[J]. 中国生态农业学报(中英文), 2023, 31(8): 1311-1321. |
[Zhang Ruiyuan, Yuan Dan, Qin Shuping, et al. Effects of carbon, nitrogen, and phosphorus stoichiometry on the priming of soil carbon mineralization[J]. Chinese Journal of Eco-Agriculture, 2023, 31(8): 1311-1321. ] | |
[9] | 赵宇航, 殷浩凯, 胡雪纯, 等. 长期秸秆还田褐土有机碳矿化特征及其驱动力[J]. 环境科学, 2024, 45(4): 2353-2362. |
[Zhao Yuhang, Yin Haokai, Hu Xuechun, et al. Characteristics and driving forces of organic carbon mineralization in brown soil with long-term straw returning[J]. Environmental Science, 2024, 45(4): 2353-2362. ] | |
[10] | 于淑华, 张丽霞, 谢雪迎, 等. 同水分模式对山东茶园土壤氮素动态的影响[J]. 土保持学报, 2021, 35(4): 289-298. |
[Yu Shuhua, Zhang Lixia, Xie Xueying, et al. Effects of water regimes on soil nitrogen dynamics in tea Garden in Shandong Province[J]. Journal of Soil and Water Conservation, 2021, 35(4): 289-298. ] | |
[11] | 杨媛媛, 李占斌, 高海东, 等. 大理河流域淤地坝拦沙贡献率分析[J]. 水土保持学报, 2021, 35(1): 85-89. |
[Yang Yuanyuan, Li Zhanbin, Gao Haidong, et al. Analysis on the contribution rate of sediment reduction of check dams in Dali River Basin[J]. Journal of Soil and Water Conservation, 2021, 35(1): 85-89. ] | |
[12] |
Tian W P, Zhan B, Jing M, et al. The effects of freeze-thaw process on soil water migration in dam and slope farmland on the Loess Plateau, China[J]. The Science of the Total Environment, 2019, 666: 721-730.
doi: S0048-9697(19)30782-X pmid: 30812006 |
[13] | Liu X J, Zhang Y, Li P, et al. Changes in the biological “regulators” of organic carbon mineralization in silted soils of check dams as a result of wet-dry cycles[J]. Land Degradation & Development, 2023, 35(2): 705-716. |
[14] | Kebede M, Beyene S, Abera Y. Modeling the influence of floriculture effluent on soil quality and dry matter yield of wheat on vertisols at debre zeit, ethiopia[J]. Journal of Environment and Earth Science, 2012. |
[15] |
Moorhead L D, Rinkes L Z, Sinsabaugh L R, et al. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme-based decomposition models[J]. Frontiers in Microbiology, 2013, 4: 223.
doi: 10.3389/fmicb.2013.00223 pmid: 23964272 |
[16] | Zhang Y, Liu X J, Li P, et al. Critical factors in soil organic carbon mineralization induced by drying, wetting and wet-dry cycles in a typical watershed of Loess Plateau[J]. Journal of Environmental Management, 2024, 362: 121313. |
[17] |
Liu L L, Wang X, Lajeunesse M, et al. A cross-biome synthesis of soil respiration and its determinants under simulated precipitation changes[J]. Global Change Biology, 2016, 22(4): 1394-405.
doi: 10.1111/gcb.13156 pmid: 26554753 |
[18] | Chantal H, Keith H, Fernando S, et al. Seasonal and long-term resource-related variations in soil microbial communities in wheat-based rotations of the Canadian prairie[J]. Soil Biology and Biochemistry, 2006, 38(8): 2104-2116. |
[19] | Xiang S R, Doyle A, Holden P A, et al. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils[J]. Soil Biology and Biochemistry, 2008, 40(9): 2281-2289. |
[20] | 王君, 宋新山, 王苑. 多重干湿交替对土壤有机碳矿化的影响[J]. 环境科学与技术, 2013, 36(11): 31-35. |
[Wang Jun, Song Xinshan, Wang Yuan. Multiple drying-wetting cycles on mineralization of organic carbon in Soil[J]. Environment Science and Technology, 2013, 36(11): 31-35. ] | |
[21] | 高俊琴, 徐兴良, 张锋, 等. 水分梯度对若尔盖高寒湿地土壤活性有机碳分布的影响[J]. 水土保持学报, 2008, 22(3): 126-131. |
[Gao Junqin, Xu Xinliang, Zhang Feng, et al. Distribution characteristics of soil labile carbon along water table gradient of alpine wetland Soils[J]. Journal of Soil and Water Conservation, 2008, 22(3): 126-131. ] | |
[22] | 陈玉军, 李婷, 朱立安, 等. 湛江红树林湿地不同淹水梯度下土壤养分及其化学计量特征[J]. 西北林学院学报, 2023, 38(5): 19-27. |
[Chen Yujun, Li Ting, Zhu Li’an, et al. Soil nutrients and stoichiometry along different flooding gradients in the Zhan Jiang Mangrove Wetland[J]. Journal of Northwest Forestry University, 2023, 38(5): 19-27. ] | |
[23] | 张红星, 王效科, 冯宗炜, 等. 黄土高原小麦田土壤呼吸对强降雨的响应[J]. 生态学报, 2008, 28(12): 6189-6196. |
[Zhang Hongxing, Wang Xiaoke, Feng Zongwei, et al. The great rainfall effect on soil respiration of wheat field in semi-arid region of the Loess Plateau[J]. Acta Ecologica Sinica, 2008, 28(12): 6189-6196. ] | |
[24] | Zhang Q J, Wang Z S, Xia S X, et al. Hydrologic-induced concentrated soil nutrients and improved plant growth increased carbon storage in a floodplain wetland over wet-dry alternating zones[J]. Science of the Total Environment, 2022, 822: 153512. |
[25] | Liu C Y, Tian H X, Li H Y, et al. The accuracy in the assessment of arsenic toxicity using soil alkaline phosphatase depends on soil water contents[J]. Ecological Indicators, 2019, 102: 457-465. |
[26] | 马伟伟, 王丽霞, 李娜, 等. 不同水氮水平对川西亚高山林地土壤酶活性的影响[J]. 生态学报, 2019, 39(19): 7218-7228. |
[Ma Weiwei, Wang Lixia, Li Na, et al. Dynamic effects of nitrogen deposition on soil enzyme activities in soils with different moisture content[J]. Journal of Ecology, 2019, 39(19): 7218-7228. ] | |
[27] | 肖如武, 黄楚龙, 宗钊辉, 等. 低磷胁迫对烤烟根系有机酸含量及土壤磷酸酶活性的影响[J]. 广东农业科学, 2021, 48(8): 74-82. |
[Xiao Ruwu, Huang Chulong, Zong Zhaohui, et al. Effects of low phosphorus stress on root organic acid content and soil phosphatase activity of flue-cured tobacco[J]. Guangdong Agricultural Sciences, 2021, 48(8): 74-82. ] | |
[28] | 王梅, 晏梓然, 赵子文, 等. 黄土高原植被演替过程中相对土壤酶活性的变化特征[J]. 水土保持学报, 2021, 35(5): 181-187. |
[Wang Mei, Yan Ziran, Zhao Ziwen, et al. Variation characteristics of specific soil enzyme activities during vegetation succession on the loess plateau[J]. Journal of Soil and Water Conservation 2021, 35(5): 181-187. ] | |
[29] | Wang Z Y, Sun G, Luo P, et al. A Study of soil-dynamics based on a simulated drought in an alpine meadow on the Tibetan plateau[J]. Journal of Mountain Science, 2013, 10(5): 833-844. |
[30] |
潘新雅, 李军保, 陈阳, 等. 6个紫花苜蓿品种根系形态结构对低磷胁迫的响应[J]. 草地学报, 2021, 29(11): 2494-2504.
doi: 10.11733/j.issn.1007-0435.2021.11.015 |
[Pan Xinya, Li Junbao, Chen Yang, et al. Response of root morphology and anatomical structure of six alfalfa cultivars to phosphorus deficiency[J]. Acta Agrestia Sinica, 2021, 29(11): 2494-2504. ]
doi: 10.11733/j.issn.1007-0435.2021.11.015 |
|
[31] | Gross A, Angert A. Use of 13C-and phosphate18O-labeled substrate for studying phosphorus and carbon cycling in soils: A proof of concept[J]. Rapid Communications in Mass Spectrometry: RCM, 2017, 31(11): 969-977. |
[32] | 阮长明, 唐国勇, 杜寿康, 等. 金沙江干热河谷不同海拔土壤碳氮磷化学计量和酶活性研究[J]. 西南农业学报, 2023, 36(11): 2464-2472. |
[Ruan Changming, Tang Guoyong, Du Shoukang, et al. Stoichiometry of soil carbon, nitrogen, and phosphorus, and enzyme activities at various elevations in the Dry-Hot Valley of the Jinsha River[J]. Southwest China Journal of Agricultural Sciences, 2023, 36(11): 2464-2472. ] | |
[33] | 刘亚军, 吴娟, 邹锋, 等. 鄱阳湖湿地灰化薹草洲滩土壤微生物和酶特性对水分梯度的响应[J]. 湿地科学, 2017, 15(2): 269-275. |
[Liu Yajun, Wu Juan, Zou Feng, et al. Response of properties of soil microbes and enzymes in beach covered by Carex cinerascens in Poyang Lake wetlands to moisture gradient[J]. Wetland Science, 2017, 15(2): 269-275. ] | |
[34] | 宋霄君, 吴会军, 武雪萍, 等. 长期保护性耕作可提高表层土壤碳氮含量和根际土壤酶活性[J]. 植物营养与肥料学报, 2018, 24(6): 1588-1597. |
[Song Xiaojun, Wu Huijun, Wu Xueping, et al. Long-term conservation tillage improves surface soil carbon and nitrogen content and rhizosphere soil enzyme activities[J]. Journal of Plant Nutrition and Fertilizer, 2018, 24(6): 1588-1597. ] | |
[35] | 梅孔灿, 陈岳民, 范跃新, 等. 凋落叶和磷添加对马尾松林土壤碳激发效应的影响[J]. 土壤学报, 2022, 59(4): 1089-1099. |
[Mei Kongcan, Chen Yuemin, Fan Yuexin, et al. Effects of litters and phosphorus addition on soil carbon priming effect in Pinus massoniana forest[J]. Acta Pedologica Sinica, 2022, 59(4): 1089-1099. ] |
|