Arid Zone Research ›› 2023, Vol. 40 ›› Issue (5): 756-766.doi: 10.13866/j.azr.2023.05.08
• Land and Water Resources • Previous Articles Next Articles
JIJI Jiamen1,2(),CHENG Yiben1(),CHEN Linglong1,WAN Pengxiang1,ZHANG Yihui1,YANG Wenbin2,BAI Xuying1,WANG Tao3
Received:
2022-08-13
Revised:
2022-10-11
Online:
2023-05-15
Published:
2023-05-30
JIJI Jiamen, CHENG Yiben, CHEN Linglong, WAN Pengxiang, ZHANG Yihui, YANG Wenbin, BAI Xuying, WANG Tao. Dynamic changes in soil moisture and its response to rainfall in Pinus sylvestris var. mongolica plantation in Horqin Sandy Land[J].Arid Zone Research, 2023, 40(5): 756-766.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 2
The soil hydraulic parameters in the study area"
剖面深度/m | θr /(cm3·cm-3) | θs /(cm3·cm-3) | α /(cm-1) | n | Ks /(cm·d-1) | l |
---|---|---|---|---|---|---|
0~0.4 | 0.0178 | 0.415 | 0.0295 | 2.150 | 645.00 | 0.5 |
0.4~0.6 | 0.0185 | 0.208 | 0.0310 | 2.510 | 815.00 | 0.5 |
0.6~0.8 | 0.0017 | 0.305 | 0.0270 | 2.665 | 650.48 | 0.5 |
0.8~1 | 0.0010 | 0.267 | 0.0217 | 2.780 | 736.00 | 0.5 |
1~1.2 | 0.0010 | 0.271 | 0.0290 | 2.643 | 806.47 | 0.5 |
1.2~1.4 | 0.0373 | 0.399 | 0.0300 | 2.580 | 852.00 | 0.5 |
1.4~1.7 | 0.0246 | 0.398 | 0.0282 | 2.690 | 766.00 | 0.5 |
1.7~-2.0 | 0.0179 | 0.433 | 0.0187 | 4.630 | 1060.00 | 0.5 |
Tab. 4
Peak value of soil water content at different depths of PSM forest land"
土层深度/m | 2021年4—10月 | ||||
---|---|---|---|---|---|
最小值/% | 出现日期/月-日 | 最大值/% | 出现日期/月-日 | 差值/% | |
0.4 | 1.29 | 04-01 | 15.32 | 08-20 | 14.03 |
0.6 | 1.00 | 04-19 | 14.00 | 08-20 | 13.00 |
0.8 | 0.67 | 04-01 | 14.31 | 08-20 | 13.64 |
1.0 | 0.66 | 04-01 | 10.79 | 08-20 | 10.13 |
1.2 | 5.70 | 04-01 | 15.51 | 08-20 | 9.81 |
1.4 | 5.01 | 04-01 | 14.39 | 08-21 | 9.38 |
1.7 | 1.90 | 04-01 | 10.56 | 09-21 | 8.66 |
2.0 | 2.00 | 04-19 | 9.68 | 08-21 | 7.68 |
Tab. 5
The correlativity between rainfall and soil water content at different depths"
时间尺度 | 土壤深度 | |||||||
---|---|---|---|---|---|---|---|---|
0.4 m | 0.6 m | 0.8 m | 1.0 m | 1.2 m | 1.4 m | 1.7 m | 2.0 m | |
日 | 0.473** | 0.502** | 0.494** | 0.410** | 0.296** | 0.173 | 0.100 | 0.124 |
周 | 0.609** | 0.600** | 0.595** | 0.541** | 0.622** | 0.378* | 0.424* | 0.534** |
半月 | 0.735** | 0.729** | 0.724** | 0.687** | 0.775** | 0.857** | 0.578* | 0.684** |
月 | 0.811* | 0.817* | 0.833* | 0.824* | 0.876** | 0.924** | 0.68 | 0.870* |
[1] | 刘源, 李晓晶, 段玉玺, 等. 库布齐沙漠东部植被恢复对土壤生态化学计量的影响[J]. 干旱区研究, 2022, 39(3): 924-932. |
[Liu Yuan, Li Xiaojing, Duan Yuxi, et al. Effects of vegetation restoration on soil stoichiometry in the eastern Hobq Desert[J]. Arid Zone Research, 2022, 39(3): 924-932. ] | |
[2] | 赵晨光, 李慧瑛, 鱼腾飞, 等. 腾格里沙漠东北缘人工植被对土壤物理性质的影响[J]. 干旱区研究, 2022, 39(4): 1112-1121. |
[Zhao Chenguang, Li Huiying, Yu Tengfei, et al. Effects of artificial vegetation construction on soil physical properties in the northeastern edge of Tengger Desert[J]. Arid Zone Research, 2022, 39(4): 1112-1121. ] | |
[3] | 汪海娇, 田丽慧, 张登山, 等. 青海湖东沙地不同植被恢复措施下土壤水分变化特征[J]. 干旱区研究, 2021, 38(1): 76-86. |
[Wang Haijiao, Tian Lihui, Zhang Dengshan, et al. Variation of soil moisture content in vegetation restoration area of sandy land at east shore of Qinghai Lake[J]. Arid Zone Research, 2021, 38(1): 76-86. ] | |
[4] |
Filipovi V, Defterdarovi J, Imnek J, et al. Estimation of vineyard soil structure and preferential flow using dye tracer, X-ray tomography, and numerical simulations[J]. Geoderma, 2020, 380: 114699.
doi: 10.1016/j.geoderma.2020.114699 |
[5] | Cheng Ranran, Chen Qiuwen, Zhang Jianguo, et al. Soil moisture variations in response to precipitation in different vegetation types: A multi-year study in the loess hilly region in China[J]. Ecohydrology, 2020, 13(3): e2196. |
[6] |
Zhang Zhishan, Xu Bingxin, Zhao Yang, et al. Long-term water balance variation after revegetation on the southeastern edge of the Tengger Desert[J]. Ecological Indicators, 2021, 131: 108216.
doi: 10.1016/j.ecolind.2021.108216 |
[7] |
Cheng Yiben, Zhan Hongbin, Yang Wenbin, et al. An ecohydrological perspective of reconstructed vegetation in the semi-arid region in drought seasons[J]. Agricultural Water Management, 2021, 243: 106488.
doi: 10.1016/j.agwat.2020.106488 |
[8] |
Cheng Yiben, Li Yanli, Zhan Hongbin, et al. New comparative experiments of different soil types for farmland water conservation in arid regions[J]. Water, 2018, 10(3): 298.
doi: 10.3390/w10030298 |
[9] | 李新乐, 吴波, 张建平, 等. 白刺沙包浅层土壤水分动态及其对不同降雨量的响应[J]. 生态学报, 2019, 39(15): 5701-5708. |
[Li Xinle, Wu Bo, Zhang Jianping, et al. Dynamics of shallow soil water content in Nitraria tangutorum nebkha and response to rainfall[J]. Acta Ecologica Sinica, 2019, 39(15): 5701-5708. ] | |
[10] |
Cheng Yiben, Yang Wenbing, Zhan Hongbin, et al. On change of soil moisture distribution with vegetation reconstruction in Mu Us Sandy Land of China, with newly designed lysimeter[J]. Frontiers in Plant Science, 2021, 12: 609529.
doi: 10.3389/fpls.2021.609529 |
[11] |
程一本, 肖洪浪, 李双. 黄土丘陵风沙区柽柳(Tamarix chinensis)林土壤水储量动态[J]. 中国沙漠, 2015, 35(2): 407-413.
doi: 10.7522/j.issn.1000-694X.2014.00031 |
[Cheng Yiben, Xiao Honglang, Li Shuang. Soil water reserves changes in loess hilly-gully region[J]. Journal of Desert Research, 2015, 35(2): 407-413. ]
doi: 10.7522/j.issn.1000-694X.2014.00031 |
|
[12] |
Zhang Zhishan, Chen Yongle, Xu Binxing, et al. Topographic differentiations of biological soil crusts and hydraulic properties in fixed sand dunes, Tengger Desert[J]. Journal of Arid Land, 2015, 7(2): 205-215.
doi: 10.1007/s40333-014-0048-y |
[13] | Yang Xinghua, Yang Fan, Zhou Chenglong, et al. Improved parameterization for effect of soil moisture on threshold friction velocity for saltation activity based on observations in the Taklimakan Desert-Science Direct[J]. Geoderma, 2020, 369(C): 114322. |
[14] | 白晓, 贾小旭, 邵明安, 等. 黄土高原北部土地利用变化对长期土壤水分平衡影响模拟[J]. 水科学进展, 2021, 32(1): 109-119. |
[Bai Xiao, Jia Xiaoxu, Shao Ming’an, et al. Simulating long-term soil water balance in response to land use change in the northern China’s Loess Plateau[J]. Advances in Water Science, 2021, 32(1): 109-119. ] | |
[15] | 张瑞文, 赵成义, 王丹丹, 等. 极端干旱区不同水分条件下胡杨林生态耗水特征[J]. 水土保持学报, 2019, 33(4): 270-278. |
[Zhang Ruiwen, Zhao Chengyi, Wang Dandan, et al. Ecological water consumption characteristics of Populus euphratica forest under different water conditions in extremely arid area[J]. Journal of Soil and Water Conservation, 2019, 33(4): 270-278. ] | |
[16] |
王宇祥, 刘廷玺, 段利民, 等. 半干旱地区半流动沙丘水分深层渗漏量及其对降雨格局的响应[J]. 应用生态学报, 2020, 31(8): 2710-2720.
doi: 10.13287/j.1001-9332.202008.011 |
[Wang Yuxiang, Liu Tingxi, Duan Limin, et al. Deep water leakage from semi-mobile dunes in semi-arid regions and its response to rainfall patterns[J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2710-2720. ]
doi: 10.13287/j.1001-9332.202008.011 |
|
[17] |
赵文智, 刘志民, 常学礼. 降水量下限引种区沙地樟子松幼林种群树高分布偏斜度和不整齐性[J]. 应用生态学报, 2002, 13(1): 6-10.
pmid: 11962321 |
[Zhao Wenzhi, Liu Zhimin, Chang Xueli. Skewness and inequality of height distribution of young Pinus sylvestris var. mongolica stands introduced on sandy soil with lower limited precipitation for tree survival and normal growth[J]. Chinese Journal of Applied Ecology, 2002, 13(1): 6-10. ]
pmid: 11962321 |
|
[18] | 吴际, 杨光, 韩雪莹, 等. 不同人工林对奈曼沙区土壤团聚体的影响[J]. 干旱区研究, 2022, 39(6): 1832-1841. |
[Wu Ji, Yang Guang, Han Xueying, et al. Effects of different plantations on soil aggregates in the Nayman sand region[J]. Arid Zone Research, 2022, 39(6): 1832-1841. ] | |
[19] | 包慧娟, 郭佳, 闫丽. 科尔沁沙地基于生态足迹模型的沙漠化成因分析——以奈曼旗为例[J]. 干旱区资源与环境, 2010, 24(2): 126-131. |
[Bao Huijuan, Guo Jia, Yan Li. Study on ecological footprint of the human activity intensity in Horqin sandy: A case of Naiman Banner[J]. Resources and Environment in Arid Areas, 2010, 24(2): 126-131. ] | |
[20] | 董佳蕊, 张桂英, 刘媛媛. 2017年奈曼旗干旱灾害分析[J]. 现代农业科技, 2018, 47(9): 241-244. |
[Dong Jiarui, Zhang Guiying, Liu Yuanyuan. Analysis on drought disaster of Naiman Banner in 2017[J]. Modern Agricultural Science and Technology, 2018, 47(9): 241-244. ] | |
[21] | 李金亚. 科尔沁沙地草原沙化时空变化特征遥感监测及驱动力分析[D]. 北京: 中国农业科学院, 2014. |
[Li Jinya. Spatial-tempotal Variations and its Driving Factors of the Grassland Sandy Desertification in the Horqin Sand Land Based on Romote Sensing[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. ] | |
[22] | 刘峰, 杨光, 韩雪莹, 等. 科尔沁沙地土地利用时空演变及空间自相关分析——以奈曼旗为例[J]. 西北林学院学报, 2020, 35(4): 148-157. |
[Liu Feng, Yang Guang, Han Xueying, et al. Spatial-temporal evolution of land use and spatial autocorrelation analysis in Horqin Sandy Land: A case study of Naiman Banner[J]. Journal of Northwest Forestry University, 2020, 35(4): 148-157. ] | |
[23] | Jirka Simunek J, Miroslav Šejna, Van Genuchten M Th, et al. The HYDRUS-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media[EB/OL]. USA: University of California Riverside, 2008. https://www.researchgate.net/publication/304823168. |
[24] | 杨锋, 和玉璞, 洪大林, 等. 基于Hydrus-1D模型模拟灌排调控稻田地下水补给过程[J]. 灌溉排水学报, 2021, 40(11): 90-97. |
[Yang Feng, He Yupu, Hong Dalin, et al. Effect of controlled irrigation and drainage on the capillary rise in paddy fields simulated using the Hydrus-1D model[J]. Journal of Irrigation and Drainage, 2021, 40 (11): 90-97. ] | |
[25] | 周晓冰. 层状土壤入渗试验及数值模拟研究[D]. 青岛: 青岛大学, 2018. |
[Zhou Xiaobing. Layered Soil Infiltration Experiment and Numerical Simulation[D]. Qingdao: Qingdao University, 2018. ] | |
[26] | 樊玉苗. 基于HYDRUS模型的农田土壤水分动态变化规律研究[D]. 沈阳: 沈阳农业大学, 2015. |
[Fan Yumiao. Simulation of Water Dynamics Using the HYDRUS Model: Based on Rain-fed Farming Land of North-east of China[D]. Shenyang: Shenyang Agricultural University, 2015. ] | |
[27] | 张晓萌. 安徽淮北平原土壤水分变化特征及其与地下水转化关系研究[D]. 邯郸: 河北工程大学, 2019. |
[Zhang Xiaomeng. Variation Characteristics of Soil Moisture Variation and Its Relationship with Groundwater Transformation in Huaibei Plain of Anhui Province[D]. Handan: Hebei University of Engineering, 2019. ] | |
[28] |
石春茂, 罗娅, 杨胜天, 等. 干热河谷区不同坡位土壤水分对降雨的响应特征[J]. 应用生态学报, 2022, 33(5): 1352-1362.
doi: 10.13287/j.1001-9332.202202.018 |
[Shi Chunmao, Luo Ya, Yang Shengtian, et al. Responses of soil moisture at different slope positions to rainfall in dry-hot valley[J]. Chinese Journal of Applied Ecology, 2022, 33(5): 1352-1362. ]
doi: 10.13287/j.1001-9332.202202.018 |
|
[29] | 张志强. 渭北旱塬农林复合区深根经济林对深层土壤水和深层渗漏的影响[D]. 杨凌: 西北农林科技大学, 2020. |
[Zhang Zhiqiang. Impact of Deep-rooted Economic Forest on Deep Soil Water Storage and Deep Drainage of Agri-forestry System in Weibei Tableland[D]. Yangling: Northwest A & F University, 2020. ] | |
[30] |
Zhang Zhishan, Liu Lichao, Li Xinrong, et al. Evaporation properties of a revegetated area of the Tengger Desert, North China[J]. Journal of Arid Environments, 2008, 72(6): 964-973.
doi: 10.1016/j.jaridenv.2007.11.010 |
[31] | 吴丽丽, 程一本, 杨文斌, 等. 毛乌素沙地流动沙丘不同深度土壤渗漏特征[J]. 生态学报, 2018, 38(22): 7960-7967. |
[Wu Lili, Cheng Yiben, Yang Wenbin, et al. Analysis of the soil percolation characteristics at different depths of a mobile sand dune in the Mu Us sandy land[J]. Acta Ecologica Sinica, 2018, 38(22): 7960-7967. ] | |
[32] | 廉泓林, 李卫, 冯金超, 等. 科尔沁沙地典型固沙人工林地土壤水分时空特征及其对环境因子的响应[J]. 生态学报, 2021, 41(20): 8256-8265. |
[Lian Honglin, Li Wei, Feng Jinchao, et al. Spatiotemporal characteristics of soil moisture and its responses to environmental factors in two typical sand-fixing plantations at the south edge of Horqin Sandy Land[J]. Acta Ecologica Sinica, 2021, 41(20): 8256-8265. ] | |
[33] | 李琦, 李发东, 张秋英, 等. 基于HYDRUS模型的华北平原小麦种植区水盐运移模拟[J]. 中国生态农业学报, 2021, 29(6): 1085-1094. |
[Li Qi, Li Fadong, Zhang Qiuying, et al. Water and salt transport simulation in the wheat growing area of the North China Plain based on HYDRUS model[J]. Chinese Journal of Eco-Agriculture, 2021, 29(6): 1085-1094. ] | |
[34] | 李阳明. 南方典型红壤坡地土壤水分运移特征与模拟[D]. 西安: 长安大学, 2021. |
[Li Yangming. Characteristics and Simulation of Soil Water Transport in Typical Red Soil Sloping Fields in Southern China[D]. Xi’an: Chang’an University, 2021. ] | |
[35] |
Mauricio, Galleguillos, Frédéric, et al. Estimation of actual evapotranspiration over a rainfed vineyard using a 1-D water transfer model: A case study within a Mediterranean watershed[J]. Agricultural Water Management, 2017, 184: 67-76.
doi: 10.1016/j.agwat.2017.01.006 |
[36] |
李冰冰, 王云强, 李志. HYDRUS-1D模型模拟渭北旱塬深剖面土壤水分的适用性[J]. 应用生态学报, 2019, 30(2): 398-404.
doi: 10.13287/j.1001-9332.201902.009 |
[Li Bingbing, Wang Yunqiang, Li Zhi. Applicability of HYDRUS-1D model in simulating the soil moisture in deep profiles on the Weibei rainfed highland, China[J]. Chinese Journal of Applied Ecology, 2019, 30(2): 398-404. ]
doi: 10.13287/j.1001-9332.201902.009 |
[1] | WAN Jiayi, SHI Jiayu, ZHANG Huamin, LI Lanhui, DING Mingjun. Soil moisture variation characteristics of alpine meadow with different cover types in the Three-River Source Region [J]. Arid Zone Research, 2024, 41(8): 1343-1353. |
[2] | YANG Zhuqing, WANG Lei, ZHANG Xue, SHEN Jianxiang, ZHANG Yijing, LI Xinyu, ZHANG Bo, NIU Jinshuai. Seed germination and seedling growth of typical sand-fixing plants in response to soil moisture [J]. Arid Zone Research, 2024, 41(5): 830-842. |
[3] | HU Guanglu, LIU Peng, LI Jia’nan, TAO Hu, ZHOU Chengqian. Characteristics of soil moisture dynamics and influencing factors of three landscape types at the oasis edge in the middle reaches of the Heihe River [J]. Arid Zone Research, 2024, 41(4): 550-565. |
[4] | ZHANG Hua, YA Haiting, XU Cungang. Remote sensing retrieval of soil moisture and estimation of vegetation water requirements in the north and south mountains of Lanzhou City [J]. Arid Zone Research, 2024, 41(4): 566-580. |
[5] | SONG Dacheng, MA Quanlin, LIU Shiquan, WEI Linyuan, WU Hao, DUAN Xiaofeng, GUO Shujiang. Species diversity in Minqin clay sand barrier-artificial Haloxylon ammodendron plantations and the characteristics of soil moisture changes [J]. Arid Zone Research, 2024, 41(4): 618-628. |
[6] | WANG Bo, ZHANG Jianjun, LAI Zongrui, ZHAO Jiongchang, HU Yawei, YANG Zhou, LI Yang, WEI Zhaoyang. Effect of soil moisture content on the accuracy of root configuration detection by ground penetrating radar [J]. Arid Zone Research, 2024, 41(3): 456-466. |
[7] | LI Jiannan, SHI Haibin, MIAO Qingfeng, SHAN Dan, RONG Hao, WEN Yaqin. Effect of environmental factors on the transpiration water consumption of various artificial arbor stands [J]. Arid Zone Research, 2023, 40(8): 1312-1321. |
[8] | XUE Zhixuan, ZHANG Li, WANG Xinjun, LI Yongkang, ZHANG Guanhong, LI Peiyao. Downscaling analysis of SMAP soil moisture products in Gurbantunggut Desert [J]. Arid Zone Research, 2023, 40(4): 583-593. |
[9] | SHI Jianzhou, LIU Xiande, TIAN Qing, YU Pengtao, WANG Yanhui. Rainfall response of soil water content on a slope of Larix principis-rupprechtii plantation in the semi-arid Liupan Mountains [J]. Arid Zone Research, 2023, 40(4): 594-604. |
[10] | MA Haowen, WANG Yongfang, GUO Enliang. Remote sensing monitoring of aeolian desertification in Ongniud Banner based on GEE [J]. Arid Zone Research, 2023, 40(3): 504-516. |
[11] | WU Rui, CAO Hongyu, GAO Guanglei, YU Minghan, DING Guodong, ZHANG Ying, ZHAO Peishan. Effects of irrigation and salinity treatments on the soil bacterial community and plant physiological characteristics of Cyperus esculentus farmland in Horqin Sandy Land [J]. Arid Zone Research, 2023, 40(12): 1938-1948. |
[12] | YANG Shuangqi, SONG Naiping, WANG Xing, CHEN Xiaoying, CHANG Daoqin. Spatiotemporal characteristics of sierozem and aeolian soil moisture levels in a desert steppe [J]. Arid Zone Research, 2023, 40(10): 1625-1636. |
[13] | YUAN Limin,YANG Zhiguo,XUE Bo,GAO Haiyan,HAN Zhaorigetu. Heterogeneity of soil moisture of blowouts in HulunBuir grassland [J]. Arid Zone Research, 2022, 39(5): 1598-1606. |
[14] | QIANG Yuquan,XU Xianying,ZHANG Jinchun,LIU Hujun,GUO Shujiang,DUAN Xiaofeng. Characteristics of stem sap flow of Haloxylon ammodendron and its response to environmental factors in Qingtu Lake, Minqin [J]. Arid Zone Research, 2022, 39(4): 1143-1154. |
[15] | YANG Ziwei,CHE Zihan,LIU Fumei,CHEN Kelong. Precipitation gradient influence on daily greenhouse gas emission fluxes from a Qinghai Lake wetland [J]. Arid Zone Research, 2022, 39(3): 754-766. |
|