Arid Zone Research ›› 2023, Vol. 40 ›› Issue (1): 123-131.doi: 10.13866/j.azr.2023.01.13
• Ecology and Environment • Previous Articles Next Articles
LIU Huanhuan1(),CHEN Yin1,LIU Yue1,GANG Chengcheng2,3(
)
Received:
2022-05-26
Revised:
2022-08-13
Online:
2023-01-15
Published:
2023-02-24
LIU Huanhuan, CHEN Yin, LIU Yue, GANG Chengcheng. Simulation of spatial pattern and future trends of grassland net primary productivity in the Loess Plateau based on random forest model[J].Arid Zone Research, 2023, 40(1): 123-131.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Environmental factors in RF"
类别 | 环境因子 | 解释 | 分辨率 | 数据来源 |
---|---|---|---|---|
S | CLAY_S | 0~30 cm黏粒含量 | 250 m | https://data.isric.org/ |
S | CLAY_T | 30~100 cm黏粒含量 | 250 m | |
S | SILT_S | 0~30 cm粉粒含量 | 250 m | |
S | SILT_T | 30~100 cm粉粒含量 | 250 m | |
S | SAND_S | 0~30 cm 砂粒含量 | 250 m | |
S | SAND_T | 30~100 cm砂粒含量 | 250 m | |
S | SOC_S | 0~30 cm土壤有机碳含量 | 250 m | |
S | SOC_T | 30~100 cm土壤有机碳含量 | 250 m | |
T | DEM | 数字高程模型 | 30 m | https://srtm.csi.cgiar.org/ |
T | Slope | 坡度 | 30 m | |
A | TEM | 年均温(2002—2020) | 1000 m | http://loess.geodata.cn |
A | TEM4-10 | 4—10月均温(2002—2020) | 1000 m | |
A | TMN | 年最低温度(2002—2020) | 1000 m | |
A | PRE | 年降水量(2002—2020) | 1000 m | |
A | PRE4-10 | 4—10月降水量(2002—2020) | 1000 m | |
A | ET | 蒸散量(2002—2020) | 500 m | https://modis.gsfc.nasa.gov |
B | SIF | 日光诱导叶绿素荧光(2002—2020) | 0.05° | https://globalecology.unh.edu |
B | FPAR | 植被有效光合辐射吸收比例(2002—2020) | 500 m | https://modis.gsfc.nasa.gov |
B | NDVI | 归一化植被指数(2002—2020) | 1000 m |
[1] | 刚成诚, 王钊齐, 杨悦, 等. 近百年全球草地生态系统净初级生产力时空动态对气候变化的响应[J]. 草业学报, 2016, 25(11): 1-14. |
[Gang Chengcheng, Wang Zhaoqi, Yang Yue, et al. The NPP spatiotemporal variation of global grassland ecosystems in response to climate change over the past 100 years[J]. Acta Prataculturae Sinica, 2016, 25(11): 1-14.] | |
[2] |
Kang L, Han X, Zhang Z, et al. Grassland ecosystems in China: Review of current knowledge and research advancement[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362(1482): 997-1008.
doi: 10.1098/rstb.2007.2029 |
[3] | Sun J, Du W. Effects of precipitation and temperature on net primary productivity and precipitation use efficiency across China’s grasslands[J]. Giscience & Remote Sensing, 2017, 54(6): 881-897. |
[4] | 王翀. 三江源区高寒草地净初级生产力模拟研究[D]. 兰州: 兰州大学, 2013. |
[Wang Chong. Study on Simulation Methods of Alpine Grassland Net Primary Productivity in Three Rivers Source Region of Tibetan Plateau, China[D]. Lanzhou: Lanzhou University, 2013.] | |
[5] | 马文红, 方精云, 杨元合, 等. 中国北方草地生物量动态及其与气候因子的关系[J]. 中国科学: 生命科学, 2010, 40(7): 632-641. |
[Ma Wenhong, Fang Jingyun, Yang Yuanhe, et al. Dynamics of grassland biomass in northern China and its relationship with climatic factors[J]. Scientia Sinica(Vitae), 2010, 40(7): 632-641.] | |
[6] | 王莺, 夏文韬, 梁天刚, 等. 基于MODIS植被指数的甘南草地净初级生产力时空变化研究[J]. 草业学报, 2010, 19(1): 201-210. |
[Wang Yuan, Xia Wentao, Liang Tiangang, et al. Spatial and temporal dynamic changes of net primary product based on MODIS vegetation index in Gannan grassland[J]. Acta Prataculturae Sinica, 2010, 19(1): 201-210.] | |
[7] |
Guo D, Song X, Hu R, et al. Grassland type-dependent spatiotemporal characteristics of productivity in Inner Mongolia and its response to climate factors[J]. Science of the Total Environment, 2021, 775: 145617.
doi: 10.1016/j.scitotenv.2021.145617 |
[8] | 张赟鑫, 郝海超, 范连连, 等. 中亚草地NPP时空动态及其驱动因素研究[J]. 干旱区研究, 2022, 39(3): 698-707. |
[Zhang Yunxin, Hao Haichao, Fan Lianlian, et al. Study on spatio-temporal dynamics and driving factors of NPP in Central Asian grassland[J]. Arid Zone Research, 2022, 39(3): 698-707.] | |
[9] |
Zhang C, Zhang Y, Li J. Grassland productivity response to climate change in the Hulunbuir Steppes of China[J]. Sustainability, 2019, 11(23): 6760-6775.
doi: 10.3390/su11236760 |
[10] | Jung M, Reichstein M, Margolis H A, et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations[J]. Journal of Geophysical Research-Biogeosciences, 2011, 116(G3): 1566-1582. |
[11] |
Yao Y, Wang X, Li Y, et al. Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years[J]. Global Change Biology, 2018, 24(1): 184-196.
doi: 10.1111/gcb.13830 pmid: 28727222 |
[12] | Sun Y, Feng Y, Wang Y, et al. Field-based estimation of net primary productivity and its above and belowground partitioning in global grassland[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(11): 6472-6496. |
[13] |
Li C, Dou T, Wang Y, et al. A method for quantifying the impacts of human activities on net primary production of grasslands in Northwest China[J]. Remote Sensing, 2021, 13(13): 2479-2497.
doi: 10.3390/rs13132479 |
[14] | 李传华, 孙皓, 王玉涛, 等. 基于机器学习估算青藏高原多年冻土区草地净初级生产力[J]. 生态学杂志, 2020, 39(5): 1734-1744. |
[Li Chuanhua, Sun Hao, Wang Yutao, et al. Estimation of grassland net primary productivity in permafrost of Qinghai-Tibet Plateau based on machine learning[J]. Chinese Journal of Ecology, 2020, 39(5): 1734-1744.] | |
[15] |
Fu B. Soil erosion and its control in the loess plateau of China[J]. Soil Use and Management, 1989, 5(2): 76-82.
doi: 10.1111/j.1475-2743.1989.tb00765.x |
[16] | 韩庆功, 彭守璋. 黄土高原潜在自然植被空间格局及其生境适宜性[J]. 水土保持学报, 2021, 35(5): 188-193, 203. |
[Han Qinggong, Peng Shouzhang. Spatial pattern and habitat suitability of potential natural vegetation in the Loess Plateau[J]. Journal of Soil and Water Conservation, 2021, 35(5): 188-193, 203.] | |
[17] |
Liu F, Yan H, Gu F, et al. Net primary productivity increased on the loess plateau following implementation of the grain to green program[J]. Journal of Resources and Ecology, 2017, 8(4): 413-421.
doi: 10.5814/j.issn.1674-764x.2017.04.014 |
[18] | 史晓亮, 杨志勇, 王馨爽, 等. 黄土高原植被净初级生产力的时空变化及其与气候因子的关系[J]. 中国农业气象, 2016, 37(4): 445-453. |
[Shi Xiaoliang, Yang Zhiyong, Wang Xinshuang, et al. Spatial and temporal variation of net primary productivity and its relationship with climate factors in the Chinese Loess Plateau[J]. Chinese Journal of Agrometeorology, 2016, 37(4): 445-453.] | |
[19] |
刘洋洋, 王倩, 杨悦, 等. 黄土高原草地净初级生产力时空动态及其影响因素[J]. 应用生态学报, 2019, 30(7): 2309-2319.
doi: 10.13287/j.1001-9332.201907.002 |
[Liu Yangyang, Wang Qian, Yang Yue, et al. Spatial-temporal dynamics of grassland NPP and its driving factors in the Loess Plateau, China[J]. Chinese Journal of Applied Ecology, 2019, 30(7): 2309-2319.]
doi: 10.13287/j.1001-9332.201907.002 |
|
[20] |
Zhao G, Mu X, Wen Z, et al. Soil Erosion, Conservation, and eco-environment changes in the Loess Plateau of China[J]. Land Degradation & Development, 2013, 24(5): 499-510.
doi: 10.1002/ldr.2246 |
[21] |
Wang Y, Shao M, Zhu Y, et al. Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China[J]. Agricultural and Forest Meteorology, 2011, 151(4): 437-448.
doi: 10.1016/j.agrformet.2010.11.016 |
[22] |
孙锐, 陈少辉, 苏红波. 黄土高原不同生态类型NDVI时空变化及其对气候变化响应[J]. 地理研究, 2020, 39(5): 1200-1214.
doi: 10.11821/dlyj020190399 |
[Sun Rui, Chen Shaohui, Su Hongbo. Spatiotemporal variation of NDVI different ecotypes on the Loess Plateau and its response to climate change[J]. Geographical Research, 2020, 39(5): 1200-1214.]
doi: 10.11821/dlyj020190399 |
|
[23] |
Jia W, Liu M, Yang Y, et al. Estimation and uncertainty analyses of grassland biomass in Northern China: Comparison of multiple remote sensing data sources and modeling approaches[J]. Ecological Indicators, 2016, 60: 1031-1040.
doi: 10.1016/j.ecolind.2015.09.001 |
[24] |
Peng S, Ding Y, Liu W, et al. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017[J]. Earth System Science Data, 2019, 11(4): 1931-1946.
doi: 10.5194/essd-11-1931-2019 |
[25] |
Li X, Xiao J. A Global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data[J]. Remote Sensing, 2019, 11(5): 517-526.
doi: 10.3390/rs11050517 |
[26] |
Su Y, Li J, Zhi H, et al. Projected drought conditions in Northwest China with CMIP6 models under combined SSPs and RCPs for 2015-2099[J]. Advances in Climate Change Research, 2020, 11(3): 210-217.
doi: 10.1016/j.accre.2020.09.003 |
[27] |
Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
doi: 10.1023/A:1010933404324 |
[28] | 刘畅, 张红, 张霄羽, 等. 半干旱地区矿区土地利用时空演变与预测[J]. 干旱区研究, 2022, 39(1): 292-300. |
[Liu Chang, Zhang Hong, Zhang Xiaoyu, et al. Spatio-temporal evolution and prediction of land use in semi-arid mining areas[J]. Arid Zone Research, 2022, 39(1): 292-300.] | |
[29] |
Biau G, Scornet E. A random forest guided tour[J]. Test, 2016, 25(2): 197-227.
doi: 10.1007/s11749-016-0481-7 |
[30] |
Belgiu M, Dragut L. Random forest in remote sensing: A review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114: 24-31.
doi: 10.1016/j.isprsjprs.2016.01.011 |
[31] |
Ohlson J, Kim S. Linear valuation without OLS: The Theil-Sen estimation approach[J]. Review of Accounting Studies, 2015, 20(1): 395-435.
doi: 10.1007/s11142-014-9300-0 |
[32] |
Ullah S, You Q, Ali A, et al. Observed changes in maximum and minimum temperatures over China-Pakistan economic corridor during 1980-2016[J]. Atmospheric Research, 2019, 216: 37-51.
doi: 10.1016/j.atmosres.2018.09.020 |
[33] |
Zeng N, Ren X, He H, et al. Estimating grassland aboveground biomass on the Tibetan Plateau using a random forest algorithm[J]. Ecological Indicators, 2019, 102: 479-487.
doi: 10.1016/j.ecolind.2019.02.023 |
[34] | 魏建洲. 黄土高原草地植被变化及其驱动力分析[D]. 兰州: 兰州大学, 2020. |
[Wei Jianzhou. Grassland Vegetation Change and its Driving Force in the Loess Plateau of China[D]. Lanzhou: Lanzhou University, 2020.] | |
[35] |
Li C, Wang Y, Wu X, et al. Reducing human activity promotes environmental restoration in arid and semi-arid regions: A case study in Northwest China[J]. Science of the Total Environment, 2021, 768: 144525.
doi: 10.1016/j.scitotenv.2020.144525 |
[36] |
Li C, Dou T, Wang Y, et al. A method for quantifying the impacts of human activities on net primary production of grasslands in Northwest China[J]. Remote Sensing, 2021, 13(13): 2479-2497.
doi: 10.3390/rs13132479 |
[37] |
Liu G, Shao Q, Fan J, et al. Change trend and restoration potential of vegetation net primary productivity in China over the past 20 years[J]. Remote Sensing, 2022, 14(7): 1634-1660.
doi: 10.3390/rs14071634 |
[38] |
刘铮, 杨金贵, 马理辉, 等. 黄土高原草地净初级生产力时空趋势及其驱动因素[J]. 应用生态学报, 2021, 32(1): 113-122.
doi: 10.13287/j.1001-9332.202101.017 |
[Liu Zheng, Yang Jingui, Ma Lihui, et al. Spatial-temporal trend of grassland net primary production and their driving factors in the Loess Plateau, China[J]. Chinese Journal of Applied Ecology, 2021, 32(1): 113-122.]
doi: 10.13287/j.1001-9332.202101.017 |
|
[39] | 杨丹, 王晓峰. 黄土高原气候和人类活动对植被NPP变化的影响[J]. 干旱区研究, 2022, 39(2): 584-593. |
[Yang Dan, Wang Xiaofeng. Contribution of climatic change and human activities to changes in net primary productivity in the Loess Plateau[J]. Arid Zone Research, 2022, 39(2): 584-593.] | |
[40] |
Gang C, Zhao W, Zhao T, et al. The impacts of land conversion and management measures on the grassland net primary productivity over the Loess Plateau, Northern China[J]. Science of the Total Environment, 2018, 645: 827-836.
doi: 10.1016/j.scitotenv.2018.07.161 |
[41] |
Wu D, Zhao X, Liang S, et al. Time-lag effects of global vegetation responses to climate change[J]. Global Change Biology, 2015, 21(9): 3520-3531.
doi: 10.1111/gcb.12945 pmid: 25858027 |
[42] |
Gang C, Gao X, Peng S, et al. Satellite observations of the recovery of forests and grasslands in Western China[J]. Journal of Geophysical Research-Biogeosciences, 2019, 124(7): 1905-1922.
doi: 10.1029/2019JG005198 |
[43] |
Yu H, Wu Y, Niu L, et al. A method to avoid spatial overfitting in estimation of grassland above-ground biomass on the Tibetan Plateau[J]. Ecological Indicators, 2021, 125: 107450.
doi: 10.1016/j.ecolind.2021.107450 |
[44] |
Karlson M, Ostwald M, Reese H, et al. Mapping tree canopy cover and aboveground biomass in sudano-sahelian woodlands using Landsat 8 and random forest[J]. Remote Sensing, 2015, 7(8): 10017-10041.
doi: 10.3390/rs70810017 |
[1] | ZHANG Bin, ZHENG Xinjun, WANG Yugang, TANG Lisong, LI Yan, DU Lan, TIAN Shengchuan. Changes in the salt content of the plow layer soil during cultivation from 1990 to 2022 on the northern slope of the Tianshan Mountains [J]. Arid Zone Research, 2024, 41(9): 1435-1445. |
[2] | QIU Chunxia, LIU Xiaohong, LI Dou, ZHANG Jiamiao, LI Pengfei. Application of airborne LiDAR with fuzzy inference system in soil erosion monitoring on the Loess Plateau [J]. Arid Zone Research, 2024, 41(8): 1331-1342. |
[3] | MAO Guangrui, ZHAO Jinmei, ZHU Gong, CUI Haiming, LIU Wanzhi. Vegetation characteristics of herb communities on highway slopes of the Loess Plateau and their relationship with soil [J]. Arid Zone Research, 2024, 41(5): 788-796. |
[4] | WANG Xinying, MA Chao, LYU Liqun, ZHANG Yan. Erosion characteristics of shallow landslides under various land-use conditions: An example of the Caijiachuan landslide [J]. Arid Zone Research, 2024, 41(4): 697-705. |
[5] | XING Xinran, ZHANG Yi, LI Peng, LIU Xiaojun, TAO Qingrui, REN Zhengyan, XU Shibin. Simulated effects of soil enzyme activity on soil organic carbon mineralization in dam land under dry and wet conditions [J]. Arid Zone Research, 2024, 41(11): 1969-1980. |
[6] | ZHAO Yuqi, WEI Tianxing. Changes in vegetation cover and influencing factors in typical counties of the Loess Plateau from 1990 to 2020 [J]. Arid Zone Research, 2024, 41(1): 147-156. |
[7] | LI Xiaoyu, JIA Keli, WEI Huimin, CHEN Ruihua, WANG Yijing. Prediction of soil salt content based on the random forest algorithm [J]. Arid Zone Research, 2023, 40(8): 1258-1267. |
[8] | LYU Jinxin, LIANG Kang, LIU Changming, ZHANG Yihui, LIU Lu. Spatial differentiation mechanism of land cover and related changes in water-carbon variables in Wuding River Basin [J]. Arid Zone Research, 2023, 40(4): 563-572. |
[9] | XUE Zhixuan, ZHANG Li, WANG Xinjun, LI Yongkang, ZHANG Guanhong, LI Peiyao. Downscaling analysis of SMAP soil moisture products in Gurbantunggut Desert [J]. Arid Zone Research, 2023, 40(4): 583-593. |
[10] | CUI Shuai, XU Qiang, YUAN Shuang, PU Chuanhao, CHEN Wanlin, JI Xu. Evaluation of Dongzhi Loess Plateau Gully development based on combined entropy weight Rank-Sum Ratio method [J]. Arid Zone Research, 2023, 40(3): 481-491. |
[11] | HE Junqi,BAI Hanwei,XU Yiwei,NI Lili. Main nutrient characteristics and influencing factors of farmland soil in the Loess Plateau of the Shaanxi Province [J]. Arid Zone Research, 2023, 40(12): 1907-1917. |
[12] | PEI Hongze, ZHAO Yachao, ZHANG Tinglong. Analysis of spatial and temporal patterns and drivers of local regional NEP in the Loess Plateau from 2000 to 2020 [J]. Arid Zone Research, 2023, 40(11): 1833-1844. |
[13] | XIAO Sentian, Ilyas NURMEMET, Nuerbiye MUHETAER, Zhao Jing, Adilai ABULAITI. Spatial and temporal analysis of soil salinity in Yutian Oasis by combined optical and radar multi-source remote sensing [J]. Arid Zone Research, 2023, 40(1): 59-68. |
[14] | AN Bin,XIAO Weiwei,ZHU Ni,LIU Yufeng. Temporal and spatial variations of precipitation concentration degree and precipitation concentration period on the Loess Plateau from 1960 to 2019 [J]. Arid Zone Research, 2022, 39(5): 1333-1344. |
[15] | LONG Zhi,SUN Yingqi,LANG Lixia,CHEN Xingpeng,ZHANG Zilong,PANG Jiaxing. Spatiotemporal patterns and characteristics of carbon emissions in the Loess Plateau: A case study of Qingcheng County [J]. Arid Zone Research, 2022, 39(5): 1631-1641. |
|