Arid Zone Research ›› 2023, Vol. 40 ›› Issue (1): 123-131.doi: 10.13866/j.azr.2023.01.13
• Ecology and Environment • Previous Articles Next Articles
LIU Huanhuan1(),CHEN Yin1,LIU Yue1,GANG Chengcheng2,3()
Received:
2022-05-26
Revised:
2022-08-13
Online:
2023-01-15
Published:
2023-02-24
LIU Huanhuan, CHEN Yin, LIU Yue, GANG Chengcheng. Simulation of spatial pattern and future trends of grassland net primary productivity in the Loess Plateau based on random forest model[J].Arid Zone Research, 2023, 40(1): 123-131.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Environmental factors in RF"
类别 | 环境因子 | 解释 | 分辨率 | 数据来源 |
---|---|---|---|---|
S | CLAY_S | 0~30 cm黏粒含量 | 250 m | https://data.isric.org/ |
S | CLAY_T | 30~100 cm黏粒含量 | 250 m | |
S | SILT_S | 0~30 cm粉粒含量 | 250 m | |
S | SILT_T | 30~100 cm粉粒含量 | 250 m | |
S | SAND_S | 0~30 cm 砂粒含量 | 250 m | |
S | SAND_T | 30~100 cm砂粒含量 | 250 m | |
S | SOC_S | 0~30 cm土壤有机碳含量 | 250 m | |
S | SOC_T | 30~100 cm土壤有机碳含量 | 250 m | |
T | DEM | 数字高程模型 | 30 m | https://srtm.csi.cgiar.org/ |
T | Slope | 坡度 | 30 m | |
A | TEM | 年均温(2002—2020) | 1000 m | http://loess.geodata.cn |
A | TEM4-10 | 4—10月均温(2002—2020) | 1000 m | |
A | TMN | 年最低温度(2002—2020) | 1000 m | |
A | PRE | 年降水量(2002—2020) | 1000 m | |
A | PRE4-10 | 4—10月降水量(2002—2020) | 1000 m | |
A | ET | 蒸散量(2002—2020) | 500 m | https://modis.gsfc.nasa.gov |
B | SIF | 日光诱导叶绿素荧光(2002—2020) | 0.05° | https://globalecology.unh.edu |
B | FPAR | 植被有效光合辐射吸收比例(2002—2020) | 500 m | https://modis.gsfc.nasa.gov |
B | NDVI | 归一化植被指数(2002—2020) | 1000 m |
[1] | 刚成诚, 王钊齐, 杨悦, 等. 近百年全球草地生态系统净初级生产力时空动态对气候变化的响应[J]. 草业学报, 2016, 25(11): 1-14. |
[Gang Chengcheng, Wang Zhaoqi, Yang Yue, et al. The NPP spatiotemporal variation of global grassland ecosystems in response to climate change over the past 100 years[J]. Acta Prataculturae Sinica, 2016, 25(11): 1-14.] | |
[2] |
Kang L, Han X, Zhang Z, et al. Grassland ecosystems in China: Review of current knowledge and research advancement[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362(1482): 997-1008.
doi: 10.1098/rstb.2007.2029 |
[3] | Sun J, Du W. Effects of precipitation and temperature on net primary productivity and precipitation use efficiency across China’s grasslands[J]. Giscience & Remote Sensing, 2017, 54(6): 881-897. |
[4] | 王翀. 三江源区高寒草地净初级生产力模拟研究[D]. 兰州: 兰州大学, 2013. |
[Wang Chong. Study on Simulation Methods of Alpine Grassland Net Primary Productivity in Three Rivers Source Region of Tibetan Plateau, China[D]. Lanzhou: Lanzhou University, 2013.] | |
[5] | 马文红, 方精云, 杨元合, 等. 中国北方草地生物量动态及其与气候因子的关系[J]. 中国科学: 生命科学, 2010, 40(7): 632-641. |
[Ma Wenhong, Fang Jingyun, Yang Yuanhe, et al. Dynamics of grassland biomass in northern China and its relationship with climatic factors[J]. Scientia Sinica(Vitae), 2010, 40(7): 632-641.] | |
[6] | 王莺, 夏文韬, 梁天刚, 等. 基于MODIS植被指数的甘南草地净初级生产力时空变化研究[J]. 草业学报, 2010, 19(1): 201-210. |
[Wang Yuan, Xia Wentao, Liang Tiangang, et al. Spatial and temporal dynamic changes of net primary product based on MODIS vegetation index in Gannan grassland[J]. Acta Prataculturae Sinica, 2010, 19(1): 201-210.] | |
[7] |
Guo D, Song X, Hu R, et al. Grassland type-dependent spatiotemporal characteristics of productivity in Inner Mongolia and its response to climate factors[J]. Science of the Total Environment, 2021, 775: 145617.
doi: 10.1016/j.scitotenv.2021.145617 |
[8] | 张赟鑫, 郝海超, 范连连, 等. 中亚草地NPP时空动态及其驱动因素研究[J]. 干旱区研究, 2022, 39(3): 698-707. |
[Zhang Yunxin, Hao Haichao, Fan Lianlian, et al. Study on spatio-temporal dynamics and driving factors of NPP in Central Asian grassland[J]. Arid Zone Research, 2022, 39(3): 698-707.] | |
[9] |
Zhang C, Zhang Y, Li J. Grassland productivity response to climate change in the Hulunbuir Steppes of China[J]. Sustainability, 2019, 11(23): 6760-6775.
doi: 10.3390/su11236760 |
[10] | Jung M, Reichstein M, Margolis H A, et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations[J]. Journal of Geophysical Research-Biogeosciences, 2011, 116(G3): 1566-1582. |
[11] |
Yao Y, Wang X, Li Y, et al. Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years[J]. Global Change Biology, 2018, 24(1): 184-196.
doi: 10.1111/gcb.13830 pmid: 28727222 |
[12] | Sun Y, Feng Y, Wang Y, et al. Field-based estimation of net primary productivity and its above and belowground partitioning in global grassland[J]. Journal of Geophysical Research: Biogeosciences, 2021, 126(11): 6472-6496. |
[13] |
Li C, Dou T, Wang Y, et al. A method for quantifying the impacts of human activities on net primary production of grasslands in Northwest China[J]. Remote Sensing, 2021, 13(13): 2479-2497.
doi: 10.3390/rs13132479 |
[14] | 李传华, 孙皓, 王玉涛, 等. 基于机器学习估算青藏高原多年冻土区草地净初级生产力[J]. 生态学杂志, 2020, 39(5): 1734-1744. |
[Li Chuanhua, Sun Hao, Wang Yutao, et al. Estimation of grassland net primary productivity in permafrost of Qinghai-Tibet Plateau based on machine learning[J]. Chinese Journal of Ecology, 2020, 39(5): 1734-1744.] | |
[15] |
Fu B. Soil erosion and its control in the loess plateau of China[J]. Soil Use and Management, 1989, 5(2): 76-82.
doi: 10.1111/j.1475-2743.1989.tb00765.x |
[16] | 韩庆功, 彭守璋. 黄土高原潜在自然植被空间格局及其生境适宜性[J]. 水土保持学报, 2021, 35(5): 188-193, 203. |
[Han Qinggong, Peng Shouzhang. Spatial pattern and habitat suitability of potential natural vegetation in the Loess Plateau[J]. Journal of Soil and Water Conservation, 2021, 35(5): 188-193, 203.] | |
[17] |
Liu F, Yan H, Gu F, et al. Net primary productivity increased on the loess plateau following implementation of the grain to green program[J]. Journal of Resources and Ecology, 2017, 8(4): 413-421.
doi: 10.5814/j.issn.1674-764x.2017.04.014 |
[18] | 史晓亮, 杨志勇, 王馨爽, 等. 黄土高原植被净初级生产力的时空变化及其与气候因子的关系[J]. 中国农业气象, 2016, 37(4): 445-453. |
[Shi Xiaoliang, Yang Zhiyong, Wang Xinshuang, et al. Spatial and temporal variation of net primary productivity and its relationship with climate factors in the Chinese Loess Plateau[J]. Chinese Journal of Agrometeorology, 2016, 37(4): 445-453.] | |
[19] |
刘洋洋, 王倩, 杨悦, 等. 黄土高原草地净初级生产力时空动态及其影响因素[J]. 应用生态学报, 2019, 30(7): 2309-2319.
doi: 10.13287/j.1001-9332.201907.002 |
[Liu Yangyang, Wang Qian, Yang Yue, et al. Spatial-temporal dynamics of grassland NPP and its driving factors in the Loess Plateau, China[J]. Chinese Journal of Applied Ecology, 2019, 30(7): 2309-2319.]
doi: 10.13287/j.1001-9332.201907.002 |
|
[20] |
Zhao G, Mu X, Wen Z, et al. Soil Erosion, Conservation, and eco-environment changes in the Loess Plateau of China[J]. Land Degradation & Development, 2013, 24(5): 499-510.
doi: 10.1002/ldr.2246 |
[21] |
Wang Y, Shao M, Zhu Y, et al. Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China[J]. Agricultural and Forest Meteorology, 2011, 151(4): 437-448.
doi: 10.1016/j.agrformet.2010.11.016 |
[22] |
孙锐, 陈少辉, 苏红波. 黄土高原不同生态类型NDVI时空变化及其对气候变化响应[J]. 地理研究, 2020, 39(5): 1200-1214.
doi: 10.11821/dlyj020190399 |
[Sun Rui, Chen Shaohui, Su Hongbo. Spatiotemporal variation of NDVI different ecotypes on the Loess Plateau and its response to climate change[J]. Geographical Research, 2020, 39(5): 1200-1214.]
doi: 10.11821/dlyj020190399 |
|
[23] |
Jia W, Liu M, Yang Y, et al. Estimation and uncertainty analyses of grassland biomass in Northern China: Comparison of multiple remote sensing data sources and modeling approaches[J]. Ecological Indicators, 2016, 60: 1031-1040.
doi: 10.1016/j.ecolind.2015.09.001 |
[24] |
Peng S, Ding Y, Liu W, et al. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017[J]. Earth System Science Data, 2019, 11(4): 1931-1946.
doi: 10.5194/essd-11-1931-2019 |
[25] |
Li X, Xiao J. A Global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data[J]. Remote Sensing, 2019, 11(5): 517-526.
doi: 10.3390/rs11050517 |
[26] |
Su Y, Li J, Zhi H, et al. Projected drought conditions in Northwest China with CMIP6 models under combined SSPs and RCPs for 2015-2099[J]. Advances in Climate Change Research, 2020, 11(3): 210-217.
doi: 10.1016/j.accre.2020.09.003 |
[27] |
Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
doi: 10.1023/A:1010933404324 |
[28] | 刘畅, 张红, 张霄羽, 等. 半干旱地区矿区土地利用时空演变与预测[J]. 干旱区研究, 2022, 39(1): 292-300. |
[Liu Chang, Zhang Hong, Zhang Xiaoyu, et al. Spatio-temporal evolution and prediction of land use in semi-arid mining areas[J]. Arid Zone Research, 2022, 39(1): 292-300.] | |
[29] |
Biau G, Scornet E. A random forest guided tour[J]. Test, 2016, 25(2): 197-227.
doi: 10.1007/s11749-016-0481-7 |
[30] |
Belgiu M, Dragut L. Random forest in remote sensing: A review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114: 24-31.
doi: 10.1016/j.isprsjprs.2016.01.011 |
[31] |
Ohlson J, Kim S. Linear valuation without OLS: The Theil-Sen estimation approach[J]. Review of Accounting Studies, 2015, 20(1): 395-435.
doi: 10.1007/s11142-014-9300-0 |
[32] |
Ullah S, You Q, Ali A, et al. Observed changes in maximum and minimum temperatures over China-Pakistan economic corridor during 1980-2016[J]. Atmospheric Research, 2019, 216: 37-51.
doi: 10.1016/j.atmosres.2018.09.020 |
[33] |
Zeng N, Ren X, He H, et al. Estimating grassland aboveground biomass on the Tibetan Plateau using a random forest algorithm[J]. Ecological Indicators, 2019, 102: 479-487.
doi: 10.1016/j.ecolind.2019.02.023 |
[34] | 魏建洲. 黄土高原草地植被变化及其驱动力分析[D]. 兰州: 兰州大学, 2020. |
[Wei Jianzhou. Grassland Vegetation Change and its Driving Force in the Loess Plateau of China[D]. Lanzhou: Lanzhou University, 2020.] | |
[35] |
Li C, Wang Y, Wu X, et al. Reducing human activity promotes environmental restoration in arid and semi-arid regions: A case study in Northwest China[J]. Science of the Total Environment, 2021, 768: 144525.
doi: 10.1016/j.scitotenv.2020.144525 |
[36] |
Li C, Dou T, Wang Y, et al. A method for quantifying the impacts of human activities on net primary production of grasslands in Northwest China[J]. Remote Sensing, 2021, 13(13): 2479-2497.
doi: 10.3390/rs13132479 |
[37] |
Liu G, Shao Q, Fan J, et al. Change trend and restoration potential of vegetation net primary productivity in China over the past 20 years[J]. Remote Sensing, 2022, 14(7): 1634-1660.
doi: 10.3390/rs14071634 |
[38] |
刘铮, 杨金贵, 马理辉, 等. 黄土高原草地净初级生产力时空趋势及其驱动因素[J]. 应用生态学报, 2021, 32(1): 113-122.
doi: 10.13287/j.1001-9332.202101.017 |
[Liu Zheng, Yang Jingui, Ma Lihui, et al. Spatial-temporal trend of grassland net primary production and their driving factors in the Loess Plateau, China[J]. Chinese Journal of Applied Ecology, 2021, 32(1): 113-122.]
doi: 10.13287/j.1001-9332.202101.017 |
|
[39] | 杨丹, 王晓峰. 黄土高原气候和人类活动对植被NPP变化的影响[J]. 干旱区研究, 2022, 39(2): 584-593. |
[Yang Dan, Wang Xiaofeng. Contribution of climatic change and human activities to changes in net primary productivity in the Loess Plateau[J]. Arid Zone Research, 2022, 39(2): 584-593.] | |
[40] |
Gang C, Zhao W, Zhao T, et al. The impacts of land conversion and management measures on the grassland net primary productivity over the Loess Plateau, Northern China[J]. Science of the Total Environment, 2018, 645: 827-836.
doi: 10.1016/j.scitotenv.2018.07.161 |
[41] |
Wu D, Zhao X, Liang S, et al. Time-lag effects of global vegetation responses to climate change[J]. Global Change Biology, 2015, 21(9): 3520-3531.
doi: 10.1111/gcb.12945 pmid: 25858027 |
[42] |
Gang C, Gao X, Peng S, et al. Satellite observations of the recovery of forests and grasslands in Western China[J]. Journal of Geophysical Research-Biogeosciences, 2019, 124(7): 1905-1922.
doi: 10.1029/2019JG005198 |
[43] |
Yu H, Wu Y, Niu L, et al. A method to avoid spatial overfitting in estimation of grassland above-ground biomass on the Tibetan Plateau[J]. Ecological Indicators, 2021, 125: 107450.
doi: 10.1016/j.ecolind.2021.107450 |
[44] |
Karlson M, Ostwald M, Reese H, et al. Mapping tree canopy cover and aboveground biomass in sudano-sahelian woodlands using Landsat 8 and random forest[J]. Remote Sensing, 2015, 7(8): 10017-10041.
doi: 10.3390/rs70810017 |
|