Arid Zone Research ›› 2022, Vol. 39 ›› Issue (1): 155-164.doi: 10.13866/j.azr.2022.01.16
Previous Articles Next Articles
SHI Wenwen1,2,3(),ZHOU Jinlong1,2,3(),ZENG Yanyan1,2,3,SUN Ying1,2,3
Received:
2021-03-30
Revised:
2021-06-04
Online:
2022-01-15
Published:
2022-01-24
Contact:
Jinlong ZHOU
E-mail:1542094922@qq.com;zjzhoujl@163.com
SHI Wenwen,ZHOU Jinlong,ZENG Yanyan,SUN Ying. Distribution characteristics and formation of fluorinein groundwater in Hotan Prefecture[J].Arid Zone Research, 2022, 39(1): 155-164.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Statistics of main hydrochemical parameters in groundwater in Hotan Prefecture (n=119)"
类型 | 统计量 | pH | TDS | K+ | Na+ | Ca2+ | Mg2+ | Cl- | SO42- | HCO3- | F- |
---|---|---|---|---|---|---|---|---|---|---|---|
潜水 | 最小值 | 7.01 | 414.9 | 7.0 | 32.0 | 11.6 | 12.4 | 92.1 | 19.0 | 36.6 | 0.10 |
最大值 | 9.63 | 41282.7 | 578.3 | 13582.1 | 401.1 | 760.5 | 14348.6 | 9889.7 | 3954.0 | 16.95 | |
平均值 | 8.04 | 2006.6 | 32.2 | 477.1 | 90.8 | 84.1 | 600.2 | 533.4 | 343.6 | 1.23 | |
标准差 | 0.46 | 4251.8 | 63.7 | 1387.4 | 61.0 | 111.3 | 1501.9 | 1058.5 | 402.6 | 1.84 | |
变异系数 | 5.7 | 211.9 | 197.5 | 290.8 | 67.3 | 132.3 | 250.2 | 198.4 | 117.2 | 150.05 | |
偏度 | 0.1 | 7.7 | 6.8 | 8.2 | 2.5 | 3.7 | 7.6 | 6.8 | 7.0 | 6.3 | |
浅层承 压水 | 最小值 | 7.86 | 536.2 | 9.5 | 65.3 | 32.1 | 29.1 | 99.2 | 146.4 | 85.5 | 0.44 |
最大值 | 8.48 | 25818.2 | 710.0 | 8848.9 | 377.6 | 690.7 | 12364.6 | 3607.6 | 1933.1 | 16.20 | |
平均值 | 8.18 | 6068.8 | 143.3 | 1674.1 | 146.0 | 191.8 | 2312.8 | 1330.4 | 490.1 | 3.56 | |
标准差 | 0.19 | 8039.7 | 222.0 | 2790.0 | 109.8 | 200.2 | 3906.6 | 1168.9 | 567.1 | 4.93 | |
变异系数 | 2.3 | 132.5 | 154.9 | 166.7 | 75.2 | 104.4 | 168.9 | 87.9 | 115.7 | 138.4 | |
偏度 | 0.3 | 2.2 | 2.5 | 2.5 | 1.1 | 2.2 | 2.6 | 1.0 | 2.4 | 2.5 | |
全水样 | 最小值 | 7.01 | 414.9 | 7.0 | 32.1 | 11.6 | 12.4 | 92.1 | 19.0 | 36.6 | 0.05 |
最大值 | 9.63 | 41282.7 | 710.0 | 13582.1 | 401.1 | 760.5 | 14348.6 | 9889.7 | 3954.0 | 16.95 | |
平均值 | 8.05 | 2279.7 | 39.7 | 557.6 | 94.5 | 91.4 | 715.3 | 587.0 | 353.5 | 1.38 | |
标准差 | 0.45 | 4716.2 | 88.7 | 1552.0 | 66.9 | 122.4 | 1820.5 | 1084.8 | 417.3 | 2.27 | |
变异系数 | 5.6 | 206.9 | 223.4 | 278.3 | 70.8 | 133.9 | 254.5 | 184.8 | 118.1 | 164.7 | |
偏度 | 0.1 | 6.2 | 6.0 | 6.7 | 2.4 | 3.5 | 6.1 | 6.0 | 6.3 | 5.4 |
Tab. 2
The relationship between water chemistry type and F- (n=119)"
地下水类型 | 水化学类型 | |
---|---|---|
潜水 | HCO3∙Cl∙SO4-Na∙Ca | 0.59 |
HCO3∙Cl∙SO4-Na∙Ca∙Mg | 0.92 | |
Cl∙SO4-Na∙Ca | 0.68 | |
Cl∙SO4-Na∙Mg | 1.31 | |
Cl∙SO4-Na | 1.61 | |
Cl-Na | 2.60 | |
浅层承压水 | HCO3∙Cl∙SO4-Na·Mg | 0.95 |
SO4-Na∙Mg | 0.44 | |
Cl∙SO4-Na∙Ca∙Mg | 0.59 | |
Cl∙SO4-Na∙Mg | 6.68 | |
Cl∙SO4-Na | 2.18 | |
Cl-Na | 4.31 |
Tab. 3
Comparative table of fluorine content in groundwater of counties and city in Hotan Prefecture (n=119) /(mg·L-1)"
类型 | 统计量 | 墨玉县(n=24) | 和田县(n=9) | 和田市(n=9) | 洛浦县(n=28) | 策勒县(n=17) | 于田县(n=13) | 民丰县(n=18) |
---|---|---|---|---|---|---|---|---|
潜水 | 最大值 | 1.96 | 1.19 | 5.06 | 4.65 | 1.06 | 3.88 | 16.95 |
最小值 | 0.24 | <0.05 | 0.49 | 0.1 | 0.3 | 0.36 | 0.28 | |
平均值 | 0.92 | 0.66 | 1.55 | 1.14 | 0.62 | 1.07 | 3.10 | |
浅层承 压水 | 最大值 | - | - | - | - | - | 2.83 | 16.2 |
最小值 | - | - | - | - | - | 1.01 | 0.44 | |
平均值 | - | - | - | - | - | 1.92 | 4.11 |
Tab. 5
Pearson correlation table between ions (n=119)"
pH | TDS | K+ | Na+ | Ca2+ | Mg2+ | Cl- | F- | |||
---|---|---|---|---|---|---|---|---|---|---|
pH | 1.000 | |||||||||
TDS | 0.229* | 1.000 | ||||||||
K+ | 0.248** | 0.942** | 1.000 | |||||||
Na+ | 0.245** | 0.991** | 0.946** | 1.000 | ||||||
Ca2+ | -0.197* | 0.150 | 0.072 | 0.037 | 1.000 | |||||
Mg2+ | 0.118 | 0.696** | 0.562** | 0.598** | 0.546** | 1.000 | ||||
Cl- | 0.225* | 0.984** | 0.977** | 0.988** | 0.079 | 0.602** | 1.000 | |||
0.198* | 0.932** | 0.782** | 0.887** | 0.343** | 0.854** | 0.857** | 1.000 | |||
0.258** | 0.921** | 0.857** | 0.933** | -0.041 | 0.565** | 0.900** | 0.833** | 1.000 | ||
F- | 0.202* | 0.411** | 0.450** | 0.392** | 0.073 | 0.367** | 0.397** | 0.400** | 0.383** | 1.000 |
Tab. 6
Hydrologic point analysis data for each path (n=6) /(mg·L-1)"
参数 | 潜水(路径Ⅰ) | 浅层承压水(路径Ⅱ) | |||||
---|---|---|---|---|---|---|---|
a(起点) | b | c(终点) | a'(起点) | b' | c'(终点) | ||
pH | 8.64 | 8.28 | 8.32 | 8 | 8.25 | 8.23 | |
TDS | 535.5 | 8465.29 | 1895.74 | 2702.63 | 10249.74 | 4578.02 | |
K+ | 8.89 | 171.68 | 27.31 | 29.87 | 193.70 | 93.65 | |
Na+ | 81.90 | 1584.61 | 369.62 | 413.79 | 2170.10 | 1057.59 | |
Ca2+ | 47.34 | 381.14 | 40.12 | 196.82 | 377.58 | 220.66 | |
Mg2+ | 29.69 | 498.85 | 143.57 | 199.78 | 690.70 | 175.21 | |
Cl- | 120.46 | 2905.16 | 488.92 | 371.29 | 2976.01 | 1417.15 | |
105.37 | 2543.81 | 635.46 | 1391.14 | 3607.56 | 1361.67 | ||
214.92 | 708.26 | 341.92 | 162.35 | 390.61 | 464.03 | ||
F- | 0.44 | 1.42 | 3.88 | 0.44 | 16.2 | 2.18 |
[1] | 涂成龙, 何令令, 崔丽峰, 等. 氟的环境地球化学行为及其对生态环境的影响[J]. 应用生态学报, 2019, 30(1): 21-29. |
[Tu Chenglong, He Lingling, Cui Lifeng, et al. Environmental and geochemical behaviors of fluorine and its impacts on ecological environment[J]. Chinese Journal of Applied Ecology, 2019, 30(1): 21-29. ] | |
[2] |
Fordyce F M, Vrana K, Zhovinsky E, et al. A health risk assessment for fluoride in Central Europe[J]. Environmental Geochemistry and Health, 2007, 29(2): 83-102.
pmid: 17256094 |
[3] |
Ali S, Thakur S K, Sarkar A, et al. Worldwide contamination of water by fluoride[J]. Environmental Chemistry Letters, 2016, 14(3): 291-315.
doi: 10.1007/s10311-016-0563-5 |
[4] | 吕晓立, 刘景涛, 周冰, 等. 塔城盆地地下水氟分布特征及富集机理[J]. 地学前缘, 2021, 28(2): 426-436. |
[Lyu Xiaoli, Liu Jingtao, Zhou Bing, et al. Distribution characteristics and enrichment mechanism of fluoride in the shallow aquifer of the Tacheng Basin[J]. Earth Science Frontiers, 2021, 28(2): 426-436. ] | |
[5] | 李巧, 贾瑞亮, 周金龙, 等. 新疆阿克苏地区高氟地下水化学特征分析[J]. 干旱区资源与环境, 2013, 27(12): 87-92. |
[Li Qiao, Jia Ruiliang, Zhou Jinlong, et al. Analysis of chemical characteristics of high-fluoride groundwater in Aksu prefecture, Xinjiang[J]. Journal of Arid Land Resources and Environment, 2013, 27(12): 87-92. ] | |
[6] | 栾风娇, 周金龙, 曾妍妍, 等. 新疆南部典型地区地下水中氟的分布特征及其富集因素分析[J]. 环境化学, 2016, 35(6): 1203-1211. |
[Luan Fengjiao, Zhou Jinlong, Zeng Yanyan, et al. Distribution characteristics and enrichment factors of fluorine in groundwater in typical areas of southern Xinjiang[J]. Environmental Chemistry, 2016, 35(6): 1203-1211. ] | |
[7] | 李玲, 周金龙, 齐万秋, 等. 和田河流域绿洲区地下水中氟的分布特征及形成过程[J]. 干旱区资源与环境, 2019, 33(1): 112-118. |
[Li Ling, Zhou Jinling, Qi Wanqiu, et al. Distribution and formation process of fluorine in groundwater in oasis area of Hotan River Basin[J]. Journal of Arid Land Resources and Environment, 2019, 33(1): 112-118. ] | |
[8] | 张杰, 周金龙, 乃尉华, 等. 叶尔羌河流域平原区高氟地下水成因分析[J]. 干旱区资源与环境, 2020, 34(4): 100-106. |
[Zhang Jie, Zhou Jinlong, Nai Weihua, et al. Characteristics of high fluoride groundwater in plain of Yarkant river basin in Xinjiang[J]. Journal of Arid Land Resources and Environment, 2020, 34(4): 100-106. ] | |
[9] |
孙倩, 阿丽亚·拜都热拉. 基于GRACE卫星和GLDAS系统的地下水水位估算模型——以和田地区克里雅河流域为例[J]. 地理科学进展, 2018, 37(7): 912-922.
doi: 10.18306/dlkxjz.2018.07.005 |
[Sun Qian, Aliya Baidourela. Mathematical fitting of influencing factors and measured groundwater level: Take Keriya River Basin in Hotan area as an example[J]. Progress in Geography, 2018, 37(7): 912-922. ]
doi: 10.18306/dlkxjz.2018.07.005 |
|
[10] | 梁冰. 水化学特征在和田河流域地表水地下水转化关系研究中的应用[D]. 乌鲁木齐: 新疆大学, 2018. |
[Liang Bing. The Application of Hydrochemical Characteristics on Transform Relationship Between Surface Water and Groundwater in the Hotan River Basin[D]. Urumqi: Xinjiang University, 2018. ] | |
[11] | 马金珠. 新疆和田地区地下水资源及其可持续开发利用[J]. 中国沙漠, 2002, 22(3): 41-47. |
[Ma Jinzhu. Groundwater resources and its sustainable development in Hotan Region, Xingjiang[J]. Journal of Desert Research, 2002, 22(3): 41-47. ] | |
[12] | 曾妍妍, 吴津蓉, 周金龙, 等. 新疆和田地区地下水质量与污染现状评价[J]. 人民黄河, 2015, 37(7): 79-81. |
[Zeng Yanyan, Wu Jinrong, Zhou Jinlong, et al. Assessment of groundwater quality and pollution in Hotan Region of Xinjiang[J]. Yellow River, 2015, 37(7): 79-81. ] | |
[13] | 毛萌, 朱雪芹. 宣化盆地地下水化学特性及灌溉适用性评价[J]. 干旱区资源与环境, 2020, 34(7): 142-149. |
[Mao Meng, Zhu Xueqin. Chemical characteristics of groundwater in Xuanhua Basin and assessment of irrigation applicability[J]. Journal of Arid Land Resources and Environment, 2020, 34(7): 142-149. ] | |
[14] |
Saxena V, Ahmed S. Dissolution of fluoride in groundwater: A water-rock interaction study[J]. Environmental Geology, 2001, 40(9): 1084-1087.
doi: 10.1007/s002540100290 |
[15] |
Rafique T, Naseem S, Usmani T H, et al. Geochemical factors controlling the occurrence of high fluoride groundwater in the Nagar Parkar area, Sindh, Pakistan[J]. Journal of Hazardous Materials, 2009, 171(1-3): 424-430.
doi: 10.1016/j.jhazmat.2009.06.018 pmid: 19586721 |
[16] | 王磊, 董少刚, 王雪欣, 等. 内蒙古托克托县“神泉”水文地球化学特征及成因研究[J]. 干旱区研究, 2020, 37(5): 1140-1147. |
[Wang Lei, Dong Shaogang, Wang Xuexin, et al. Hydrogeochemical characteristics and origin of “Shenquan” in Tuoketuo County, Inner Mongolia[J]. Arid Zone Research, 2020, 37(5): 1140-1147. ] | |
[17] |
Yan J, Chen J, Zhang W, et al. Determining fluoride distribution and influencing factors in groundwater in Songyuan, Northeast China, using hydrochemical and isotopic methods[J]. Journal of Geochemical Exploration, 2020, 217: 106605.
doi: 10.1016/j.gexplo.2020.106605 |
[18] |
Keesari T, Sinha U K, Deodhar A, et al. High fluoride in groundwater of an industrialized area of Eastern India (Odisha): Inferences from geochemical and isotopic investigation[J]. Environmental Earth Sciences, 2016, 75(14): 1-17.
doi: 10.1007/s12665-015-4873-x |
[19] |
Gibbs R J. Mechanisms Controlling World Water Chemistry[J]. Science, 1970, 170(3962): 1088-1090.
pmid: 17777828 |
[20] |
Rashid A, Guan D X, Farooqi A, et al. Fluoride prevalence in groundwater around a fluorite mining area in the flood plain of the River Swat, Pakistan[J]. Science of The Total Environment, 2018, 635: 203-215.
doi: 10.1016/j.scitotenv.2018.04.064 |
[21] |
Wu C, Wu X, Qian C, et al. Hydrogeochemistry and groundwater quality assessment of high fluoride levels in the Yanchi endorheic region, northwest China[J]. Applied Geochemistry, 2018, 98: 404-417.
doi: 10.1016/j.apgeochem.2018.10.016 |
[22] | 吴初, 武雄, 张艳帅, 等. 秦皇岛牛心山高氟地下水分布特征及成因[J]. 地学前缘, 2018, 25(4): 307-315. |
[Wu Chu, Wu Xiong, Zhang Yanshuai, et al. Distribution characteristics and genesis of high-fluoride groundwater in the Niuxin Mountain, Qinhuangdao[J]. Earth Science Frontiers, 2018, 25(4): 307-315. ] | |
[23] |
Su C, Wang Y, Xie X, et al. An isotope hydrochemical approach to understand fluoride release into groundwaters of the Datong Basin, Northern China[J]. Environmental Science Process and Impacts, 2015, 17(4): 791-801.
doi: 10.1039/C4EM00584H |
[24] |
Su C, Wang Y, Xie X, et al. Aqueous geochemistry of high-fluoride groundwater in Datong Basin, Northern China[J]. Journal of Geochemical Exploration, 2013, 135(1): 79-92.
doi: 10.1016/j.gexplo.2012.09.003 |
[25] | 刘海, 康博, 沈军辉. 基于反向地球化学模拟的地下水形成作用: 以安徽省泗县为例[J]. 现代地质, 2019, 33(2): 440-450. |
[Liu Hai, Kang Bo, Shen Junhui. Formation of groundwater based on inverse geochemical modeling: A case study from the Sixian County, Anhui Province[J]. Geoscience, 2019, 33(2): 440-450. ] |
[1] | ZHANG Lili,DENG Xiaoya,LONG Aihua,GAO Haifeng,REN Cai,LI Zhiyun. Spatial-temporal assessment of water resource security based on the agricultural water footprint: A case in the Hotan Prefecture of Xinjiang [J]. Arid Zone Research, 2022, 39(2): 436-447. |
[2] | Mamatabdulla Emer,Ayxamgul Mamat,Sayran Wayli,CHEN Tianyu,Bupatima Aibaidulla,Ayxam Mamattuhti,MAO Weiyi. Temporal distribution and variation characteristics of sandstorms in Hotan Prefecture [J]. Arid Zone Research, 2021, 38(5): 1306-1317. |
[3] | ZENG Xiaoxian,ZENG Yanyan,ZHOU Jinlong,LEI Mi,SUN Ying. Hydrochemical characteristics and cause analysis of the shallow groundwater in Shihezi City [J]. Arid Zone Research, 2021, 38(1): 68-75. |
[4] | WANG Lu-lin, WU Fa-dong. Features and Formation Causes of Granitic Stone Forest in Bayan Nur, Inner Mongolia [J]. , 2014, 31(3): 578-584. |
|