Arid Zone Research ›› 2021, Vol. 38 ›› Issue (1): 154-162.doi: 10.13866/j.azr.2021.01.17
• Weather and Climate • Previous Articles Next Articles
ZHANG Hailiang(),LI Huoqing,Ali Mamtimin()
Received:
2020-03-10
Revised:
2020-06-04
Online:
2021-01-15
Published:
2021-03-05
Contact:
Mamtimin Ali
E-mail:zhanghl@idm.cn;ali@idm.cn
ZHANG Hailiang,LI Huoqing,Ali Mamtimin. Simulation characteristics of planetary boundary layer parameterizations: A case study in Xinjiang during summer[J].Arid Zone Research, 2021, 38(1): 154-162.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Stull R B. An Introduction to Boundary Layer Meteorology[M]. Netherlands: Springer, 1988. |
[2] | Smith R K, Thomsen G L. Dependence of tropical-cyclone intensification on the boundary-layer representation in a numerical model[J]. Quarterly Journal of the Royal Meteorological Society, 2010,136(652):1671-1685. |
[3] | Shin H H, Hong S Y. Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99[J]. Boundary-Layer Meteorology, 2011,139(2):261-281. |
[4] | Cheng F Y, Chin S C, Liu T H. The role of boundary layer schemes in meteorological and air quality simulations of the Taiwan area[J]. Atmospheric Environment, 2012,54(7):714-727. |
[5] | Xie B, Fung J C H, Chan A, et al. Evaluation of nonlocal and local planetary boundary layer schemes in the WRF model[J]. Journal of Geophysical Research Atmospheres, 2012,117(D12). |
[6] | Huang W, Shen X, Wang W, et al. Comparison of the thermal and dynamic structural characteristics in boundary layer with different boundary layer parameterizations[J]. Chinese Journal of Geophysics, 2014,57(4):543-562. |
[7] | Cohen A E, Cavallo S M, Coniglio M C, et al. A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern US cold season severe weather environmens[J]. Weather and Forecasting, 2015,30(3):591-612. |
[8] | 王建捷, 周斌, 郭肖容. 不同对流参数化方案试验中凝结加热的特征及对暴雨中尺度模拟结果的影响[J]. 气象学报, 2005,63(4):405-417. |
[ Wang Jianjie, Zhou bin, Guo Xiaorong. Numerical study on characteristics of condensational heating rates and their impacts on mesoscale structure of torrential rain simulation[J]. Acta Meteorologica Sinica, 2005,63(4):405-417. ] | |
[9] | 孙建华, 赵思雄. 一次罕见的华南大暴雨过程的诊断与数值模拟研究[J]. 大气科学, 2000,24(3):381-392. |
[ Sun Jianhua, Zhao Sixiong. A diagnosis and simulation study of a strong heavy rainfall in south China[J]. Chinese Journal of Atmospheric Sciences, 2000,24(3):381-392. ] | |
[10] | 陈静, 薛纪善, 颜宏. 物理过程参数化方案对中尺度暴雨数值模拟影响的研究[J]. 气象学报, 2003,61(2):203-218. |
[ Chen Jing, Xue Jishan, Yan Hong. The impact of physics parameterization schemes on mesoscale heavy rainfall simulation[J]. Acta Meteorologica Sinica, 2003,61(2):203-218. ] | |
[11] | 孙文奇, 李昌义. 数值模式中的大气边界层参数化方案综述[J]. 海洋气象学报, 2018,38(3):11-19. |
[ Sun Wenqi, Li Changyi. A review of atmospheric boundary layer parameterization schemes in numerical models[J]. Journal of Marine Meteorology, 2018,38(3):11-19. ] | |
[12] | Sukoriansky S, Galperin B, Perov V. Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice[J]. Boundary-Layer Meteorology, 2005,117(2):231-257. |
[13] | Gibbs J A, Fedorovich E. Comparison of convective boundary layer velocity spectra retrieved from large-eddy-simulation and Weather Research and Forecasting model data[J]. Journal of Applied Meteorology and Climatology, 2014,53(2):77-394. |
[14] | LeMone M A, Tewari M, Chen F, et al. Objectively determined fair-weather CBL depths in the ARW-WRF model and their comparison to CASES-97 observations[J]. Monthly Weather Review, 2013,141(1):30-54. |
[15] | Banks R F, Tiana-Alsina J, Baldasano, J M, et al. Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, radiosondes during the HygrA-CD campaign[J]. Atmospheric Research, 2016, 176-177:185-201. |
[16] | 张小培, 银燕. 复杂地形地区WRF模式四种边界层参数化方案的评估[J]. 大气科学学报, 2013,36(1):68-76. |
[ Zhang Xiaopei, Yin Yan. Evaluation of the four PBL schemes in WRF model over complex topographic areas[J]. Transactions of Atmospheric Sciences, 2013,36(1):68-76. ] | |
[17] | 王颖, 张镭, 胡菊, 等. WRF模式对山谷城市边界层模拟能力的检验及地面气象特征分析[J]. 高原气象, 2010,29(6):1397-1407. |
[ Wang Ying, Zhang Lei, Hu Ju, et al. Verification of WRF simulation capacity on PBL characteristic and analysis of surface meteorological characteristic over complex terrain[J]. Plateau Meteorology, 2010,29(6):1397-1407. ] | |
[18] | 陈淑莹, 胡琪, 张弛, 等. WRF模式在天山地区模拟能力的敏感性评估[J]. 干旱区研究, 2019,36(1):196-206. |
[ Chen Shuying, Hu Qi, Zhang Chi, et al. Evaluation on the sensitivity of WRF model in the Tianshan Mountains[J]. Arid Zone Research, 2019,36(1):196-206. ] | |
[19] | 黄文彦, 沈新勇, 王卫国, 等. 边界层参数化方案对边界层热力和动力结构特征影响的比较[J]. 地球物理学报, 2014,57(5):1399-1414. |
[ Huang Wenyan, Shen Xinyong, Wang Weiguo, et al. Comparison of the thermal and dynamic structural characteristics in boundary layer with different boundary layer parameterizations[J]. Chinese Journal of Geophysics, 2014,57(5):1399-1414. ] | |
[20] | Hu X M, Nielsen-Gammon J W, Zhang F. Evaluation of three planetary boundary layer schemes in the WRF model[J]. Journal of Applied Meteorology & Climatology, 2010,49(9):1831-1844. |
[21] | Wang W, Shen X, Huang W. A comparison of boundary-layer characteristics simulated using different parametrization schemes[J]. Boundary-Layer Meteorology, 2016,161(2):375-403. |
[22] | Cuxart J, Holtslag A A M, Beare R J, et al. Single-column model intercomparison for a stably stratified atmospheric boundary layer[J]. Boundary-Layer Meteorology, 2006,118(2):273-303. |
[23] | Ayotte K W, Sullivan P P, Anders Andrén, et al. An evaluation of neutral and convective planetary boundary-layer parameterizations relative to large eddy simulations[J]. Boundary-Layer Meteorology, 1996,79(1-2):131-175. |
[24] | Pleim J E. A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: model description and testing[J]. Journal of Applied Meteorology & Climatology, 2007,46(9):1383-1395. |
[25] | Angevine W M, Jiang H, Mauritsen T. Performance of an eddy diffusivity-mass flux scheme for shallow cumulus boundary layers[J]. Monthly Weather Review, 2010,138(7):2895-2912. |
[26] | 赵建华, 张峰, 梁芸, 等. 大气边界层湍流相干结构研究进展[J]. 干旱区研究, 2019,36(6):1419-1430. |
[ Zhao Jianhua, Zhang Feng, Liang Yun, et al. Research progress on turbulent coherent structure in atmospheric boundary layer[J]. Arid Zone Research, 2019,36(6):1419-1430. ] | |
[27] | Zhang H, Liu J, Li H, et al. The impacts of soil moisture initialization on the forecasts of Weather Research and Forecasting model: A case study in Xinjiang, China[J]. Water, 2020,12(7):1892. |
[1] | LI Jiannan, SHI Haibin, MIAO Qingfeng, SHAN Dan, RONG Hao, WEN Yaqin. Effect of environmental factors on the transpiration water consumption of various artificial arbor stands [J]. Arid Zone Research, 2023, 40(8): 1312-1321. |
[2] | JIJI Jiamen, CHENG Yiben, CHEN Linglong, WAN Pengxiang, ZHANG Yihui, YANG Wenbin, BAI Xuying, WANG Tao. Dynamic changes in soil moisture and its response to rainfall in Pinus sylvestris var. mongolica plantation in Horqin Sandy Land [J]. Arid Zone Research, 2023, 40(5): 756-766. |
[3] | XUE Zhixuan, ZHANG Li, WANG Xinjun, LI Yongkang, ZHANG Guanhong, LI Peiyao. Downscaling analysis of SMAP soil moisture products in Gurbantunggut Desert [J]. Arid Zone Research, 2023, 40(4): 583-593. |
[4] | SHI Jianzhou, LIU Xiande, TIAN Qing, YU Pengtao, WANG Yanhui. Rainfall response of soil water content on a slope of Larix principis-rupprechtii plantation in the semi-arid Liupan Mountains [J]. Arid Zone Research, 2023, 40(4): 594-604. |
[5] | YANG Shuangqi, SONG Naiping, WANG Xing, CHEN Xiaoying, CHANG Daoqin. Spatiotemporal characteristics of sierozem and aeolian soil moisture levels in a desert steppe [J]. Arid Zone Research, 2023, 40(10): 1625-1636. |
[6] | YUAN Limin,YANG Zhiguo,XUE Bo,GAO Haiyan,HAN Zhaorigetu. Heterogeneity of soil moisture of blowouts in HulunBuir grassland [J]. Arid Zone Research, 2022, 39(5): 1598-1606. |
[7] | QIANG Yuquan,XU Xianying,ZHANG Jinchun,LIU Hujun,GUO Shujiang,DUAN Xiaofeng. Characteristics of stem sap flow of Haloxylon ammodendron and its response to environmental factors in Qingtu Lake, Minqin [J]. Arid Zone Research, 2022, 39(4): 1143-1154. |
[8] | YANG Ziwei,CHE Zihan,LIU Fumei,CHEN Kelong. Precipitation gradient influence on daily greenhouse gas emission fluxes from a Qinghai Lake wetland [J]. Arid Zone Research, 2022, 39(3): 754-766. |
[9] | WANG Jia,TIAN Qing,WANG Lide,HE Hongsheng,SONG Dacheng,GUO Chunxiu. Effects of different years of returning farmland on soil moisture and species diversity in Minqin Qingtu Lake area [J]. Arid Zone Research, 2022, 39(2): 605-614. |
[10] | CHENG Mengyuan,CAO Guangchao,ZHAO Meiliang,DIAO Erlong,HE Qixin,GAO Siyuan,QIU Xunxun,CHENG Guo. Temporal and spatial variation characteristics and influencial factors of soil moisture in the Xiangride-Qaidam River Basin [J]. Arid Zone Research, 2022, 39(2): 615-624. |
[11] | SONG Liangcui,MA Weiwei,LI Guang,LONG Yongchun,CHANG Wenhua. Effect of water on nitrogen mineralization in degraded succession of Gahai Wetland [J]. Arid Zone Research, 2022, 39(1): 165-175. |
[12] | WANG Jing,FANG Feng,HUANG Pengcheng,YUE Ping,LI Jiangping,WANG Dawei. Evaluation of Advanced Microwave Scanning Radiometer for EOS(AMSR-E) soil moisture products over China and its application in drought monitoring [J]. Arid Zone Research, 2021, 38(3): 650-664. |
[13] | WANG Haijiao,TIAN Lihui,ZHANG Dengshan,WANG Qiaoyu. Variation of soil moisture content in vegetation restoration area of sandy land at east shore of Qinghai Lake [J]. Arid Zone Research, 2021, 38(1): 76-86. |
[14] | ZHANG Yuan-hao, Ala Musa, YIN Jia-wang, JIANG Shao-yan. Spatial and temporal variations in sand dune soil moisture content and groundwater depth [J]. Arid Zone Research, 2020, 37(6): 1427-1436. |
[15] | WANG Bo, DUAN Yu-xi, WANG Wei-feng, LI Xiao-jing, LIU Yuan, LIU Zong-qi. Spatial and temporal variability of soil moisture content during vegetation succession in sand-binding areas [J]. Arid Zone Research, 2020, 37(4): 881-889. |
|