Arid Zone Research ›› 2025, Vol. 42 ›› Issue (2): 360-371.doi: 10.13866/j.azr.2025.02.15
• Ecology and Environment • Previous Articles Next Articles
LI Qi1(), DANG Guofeng1, YU Tengfei2(
), ZHANG Lang1, CHEN Weiyu2
Received:
2024-08-15
Revised:
2024-12-17
Online:
2025-02-15
Published:
2025-02-21
Contact:
YU Tengfei
E-mail:176924194@qq.com;yutf@lzb.ac.cn
LI Qi, DANG Guofeng, YU Tengfei, ZHANG Lang, CHEN Weiyu. Spatial-temporal variation and driving forces analysis of ecological environment quality in arid counties based on GEE: A case study of Alxa Left Banner[J].Arid Zone Research, 2025, 42(2): 360-371.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Basic information about Landsat data sources"
年份 | 数据集 | 卫星 | 使用波段 | 月/云/空间分辨率 |
---|---|---|---|---|
1991—2011 | LANDSAT/LT05/C02/T1_L2 | Landsat 5/TM | SR_B(1,2,3,4,5,7)ST_B6 | 7—9月 <20% 30 m |
2012 | LANDSAT/LE07/C02/T1_L2 | Landsat 7/ETM+ | SR_B(1,2,3,4,5,7)ST_B6 | |
2013—2021 | LANDSAT/LC08/C02/T1_L2 | Landsat 8/OLI/TIRS | SR_B(2,3,4,5,6,7)ST_B10 |
Tab. 5
Changes in remote sensing ecological index (RSEI) area percentage under different land uses /%"
年份 | 土地利用 | 显著变差 (-1.0~-0.6) | 变差 (-0.6~-0.2) | 不变 (-0.2~0.2) | 变好 (0.2~0.6) | 显著变好 (0.6~1.0) |
---|---|---|---|---|---|---|
1991—2008 | 耕地 | 0.00 | 0.02 | 0.51 | 0.41 | 0.07 |
林地 | 0.00 | 0.00 | 0.97 | 0.03 | 0.00 | |
草地 | 0.00 | 0.05 | 0.87 | 0.08 | 0.00 | |
裸地 | 0.00 | 0.05 | 0.91 | 0.04 | 0.00 | |
不透水面 | 0.00 | 0.20 | 5.43 | 0.45 | 0.03 | |
2008—2020 | 耕地 | 0.01 | 0.07 | 0.80 | 0.11 | 0.01 |
林地 | 0.00 | 0.00 | 0.96 | 0.04 | 0.00 | |
草地 | 0.00 | 0.05 | 0.89 | 0.06 | 0.00 | |
裸地 | 0.00 | 0.04 | 0.95 | 0.01 | 0.00 | |
不透水面 | 0.01 | 0.13 | 0.80 | 0.06 | 0.00 |
[1] | Yu H, Wang L, Zhang J, et al. A global drought-aridity index: The spatiotemporal standardized precipitation evapotranspiration index[J]. Ecological Indicators, 2023, 153: 110484. |
[2] |
程静, 王鹏, 陈红翔, 等. 半干旱区生态风险时空演变及其影响因素的地理探测——以宁夏盐池县为例[J]. 干旱区地理, 2022, 45(5): 1637-1648.
doi: 10.12118/j.issn.1000-6060.2022.033 |
[Cheng Jing, Wang Peng, Chen Hongxiang, et al. Geographical exploration of the spatial and temporal evolution of ecological risk and its influencing factors in semi-arid regions: A case of Yanchi County in Ningxia[J]. Arid Land Geography, 2022, 45(5): 1637-1648. ]
doi: 10.12118/j.issn.1000-6060.2022.033 |
|
[3] | Pravalie R. Drylands extent and environmental issues. A global approach[J]. Earth-Science Reviews, 2016, 161: 259-278. |
[4] | Liu H, Li X J, Mao F J, et al. Spatiotemporal evolution of fractional vegetation cover and its response to climate change based on MODIS data in the subtropical region of China[J]. Remote Sensing, 2021, 13(5): 913. |
[5] | Chen X, Liu C, Yu X. Urbanization, economic development, and ecological environment: Evidence from provincial panel data in China[J]. Sustainability, 2022, 14(3): 1124. |
[6] | Li J, Song C, Cao L, et al. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China[J]. Remote Sensing of Environment, 2011, 115(12): 3249-3263. |
[7] | Singh P, Kikon N, Verma P. Impact of land use change and urbanization on urban heat island in Lucknow City, Central India. A remote sensing based estimate[J]. Sustainable Cities and Society, 2017, 32: 100-114. |
[8] | Zhang X, Estoque R C, Murayama Y. An urban heat island study in Nanchang City, China based on land surface temperature and social-ecological variables[J]. Sustainable Cities and Society, 2017, 32: 557-568. |
[9] | Xu H, Wang Y, Guan H, et al. Detecting ecological changes with a remote sensing based ecological index (RSEI) produced time series and change vector analysis[J]. Remote Sensing, 2019, 11(20): 2345. |
[10] | Xu H. A remote sensing index for assessment of regional ecological changes[J]. China Environmental Science, 2013, 33(5): 889-897. |
[11] |
冯自贤, 佘璐, 王秀慧, 等. 基于改进遥感生态指数的宁夏生态环境质量时空变化[J]. 生态环境学报, 2024, 33(1): 131-143.
doi: 10.16258/j.cnki.1674-5906.2024.01.014 |
[Feng Zixian, She Lu, Wang Xiuhui, et al. Spatial and temporal variations of ecological environment quality in Ningxia based on improved remote sensing ecological index[J]. Ecology and Environmental Sciences, 2024, 33(1): 131-143. ] | |
[12] | 刘尚钦, 张福浩, 赵习枝, 等. 干旱区绿洲遥感生态指数的改进[J]. 测绘科学, 2022, 47(6): 143-151, 203. |
[Liu Shangqin, Zhang Fuhao, Zhao Xizhi, et al. Improvement of remote sensing ecological index in oases in arid area[J]. Science of Surveying and Mapping, 2022, 47(6): 143-151, 203. ] | |
[13] | 陈丽红, 刘普幸, 花亚萍. 基于RSEI的疏勒河流域生态质量综合评价及其成因分析[J]. 土壤通报, 2021, 52(1): 25-33. |
[Chen Lihong, Liu Puxing, Hua Yaping. Comprehensive evaluation of ecological quality and its factors analysis in the Shule River Basin based on RSEI[J]. Chinese Journal of Soil Science, 2021, 52(1): 25-33. ] | |
[14] | 李朋轩, 杨永崇, 王涛, 等. 新疆地区土地利用变化及其对生态环境质量的影响[J]. 北方园艺, 2022(8): 67-75. |
[Li Pengxuan, Yang Yongchong, Wang Tao, et al. Land use changes and its impact on ecological environment quality in Xinjiang[J]. Northern Horticulture, 2022(8): 67-75. ] | |
[15] | Lyu X, Li X, Gong J, et al. Comprehensive grassland degradation monitoring by remote sensing in Xilinhot, Inner Mongolia, China[J]. Sustainability, 2020, 12(9): 3682. |
[16] | Su X, Singh V P, Niu J, et al. Spatiotemporal trends of aridity index in Shiyang River basin of northwest China[J]. Stochastic Environmental Research and Risk Assessment, 2015, 29: 1571-1582. |
[17] | Cook M, Schott J R, Mandel J, et al. Development of an operational calibration methodology for the Landsat thermal data archive and initial testing of the atmospheric compensation component of a Land Surface Temperature (LST) product from the archive[J]. Remote Sensing, 2014, 6(11): 11244-11266. |
[18] | Yang J, Huang X. 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data Discussions, 2021, 13(8): 3907-3925. |
[19] | Hu X, Xu H. A new remote sensing index for assessing the spatial heterogeneity in urban ecological quality: A case from Fuzhou City, China[J]. Ecological Indicators, 2018, 89: 11-21. |
[20] | Huang C, Wylie B, Yang L, et al. Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance[J]. International Journal of Remote Sensing, 2002, 23(8): 1741-1748. |
[21] | Baig M H A, Zhang L, Shuai T, et al. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance[J]. Remote Sensing Letters, 2014, 5(5): 423-431. |
[22] | 杜秉晨曦, 程勇翔, 吴玲. 准噶尔盆地植被与土壤盐渍化关联性变化趋势分析[J]. 生态学报, 2021, 41(23): 9364-9376. |
[Du Bingchenxi, Cheng Yongxiang, Wu Ling. Analysis of negative correlation between vegetation and soil salinization in Junggar Basin[J]. Acta Ecologica Sinica, 2021, 41(23): 9364-9376. ] | |
[23] | Yu R, Liu T, Xu Y, et al. Analysis of salinization dynamics by remote sensing in Hetao Irrigation District of North China[J]. Agricultural Water Management, 2010, 97(12): 1952-1960. |
[24] | Wan L H, Wang S, Chen X. GeoDA-based spatial correlation analysis of GDP in Hadaqi industrial corridor[J]. Geographical Research, 2011, 30(6): 977-984. |
[25] | Anselin L. Local indicators of spatial association-LISA[J]. Geographical Analysis, 1995, 27(2): 93-115. |
[26] | 赵晨光, 程业森, 李慧瑛, 等. 腾格里沙漠东北缘人工植被恢复区土地利用/覆被变化及其驱动因素分析[J]. 干旱区资源与环境, 2021, 35(6): 131-138. |
[Zhao Chenguang, Cheng Yesen, Li Huiying, et al. Land use/cover change of an artificial vegetation system in the northeastern edge of Tengger Desert[J]. Journal of Arid Land Resources and Environment, 2021, 35(6): 131-138. ] | |
[27] | 吴亚坤, 李金彪, 高昊辰, 等. 阿拉善左旗土壤盐分空间变异特征研究[J]. 土壤, 2019, 51(5): 1030-1035. |
[Wu Yakun, Li Jinbiao, Gao Haochen, et al. Study on spatial variability of soil salinity in Alxa Zuoqi[J]. Soil, 2019, 51(5): 1030-1035. ] | |
[28] | 张飞, 塔西甫拉提·特依拜, 丁建丽, 等. 干旱区土壤盐渍化及其对生态环境的损害评估——以新疆沙雅县为例[J]. 自然灾害学报, 2009, 18(4): 55-62. |
[Zhang Fei, Tashpolat Tiyip, Ding Jianli, et al. Soil salinization in arid area and its economic loss evaluation of eco-environmental damages: A case of Shaya County in Xinjiang[J]. Journal of Natural Disasters, 2009, 18(4): 55-62. ] | |
[29] |
罗镕基, 王宏涛, 王成. 基于改进遥感生态指数的甘肃省古浪县生态质量评价[J]. 干旱区地理, 2023, 46(4): 539-549.
doi: 10.12118/j.issn.1000-6060.2022.322 |
[Luo Rongji, Wang Hongtao, Wang Cheng. Ecological quality evaluation of Gulang County in Gansu Province based on improved remote sensing ecological index[J]. Arid Land Geography, 2023, 46(4): 539-549. ]
doi: 10.12118/j.issn.1000-6060.2022.322 |
|
[30] | 郭泽呈, 魏伟, 庞素菲, 等. 基于SPCA和遥感指数的干旱内陆河流域生态脆弱性时空演变及动因分析——以石羊河流域为例[J]. 生态学报, 2019, 39(7): 2558-2572. |
[Guo Zecheng, Wei Wei, Pang Sufei, et al. Spatio-temporal evolution and motivation analysis of ecological vulnerability in arid inland river basin based on SPCA and remote sensing index: A case study on the Shiyang River Basin[J]. Acta Ecologica Sinica, 2019, 39(7): 2558-2572. ] | |
[31] | 代云豪, 管瑶, 刘孟琴, 等. 1990—2020年阿拉尔垦区生态环境质量动态监测与评价[J]. 水土保持通报, 2022, 42(2): 122-128. |
[Dai Yunhao, Guan Yao, Liu Mengqin, et al. Dynamic monitoring and evaluation of ecological environment quality in Alar Reclamation Area from 1990 to 2020[J]. Bulletin of Soil and Water Conservation, 2022, 42(2): 122-128. ] | |
[32] | 杜高奇, 李自强, 赵勇, 等. 基于RSEI的黄河流域生态环境质量监测与驱动因素分析[J]. 水利水电技术, 2022, 53(12): 81-93. |
[Du Gaoqi, Li Ziqiang, Zhao Yong, et al. RSEI-based analysis on eco-environment quality monitoring and driving factors of Yellow River Basin[J]. Water Resources and Hydropower Engineering, 2022, 53(12): 81-93. ] | |
[33] | 高吉喜, 张小华, 邹长新, 等. 筑牢生态屏障建设美丽中国[J]. 环境保护, 2021, 49(6): 17-20. |
[Gao Jixi, Zhang Xiaohua, Zou Changxin, et al. Constructing ecological barriers to build a beautiful China[J]. Environmental Protection, 2021, 49(6): 17-20. ] | |
[34] | Chen W Y, Yu T F, Han T, et al. Effects of afforestation by aerial sowing on topsoil physicochemical properties in the sandy desert, NW China[J]. Journal of Soils and Sediments, 2023, 23(6): 2417-2427 |
[35] |
赵晨光, 李慧瑛, 鱼腾飞, 等. 腾格里沙漠东北缘人工植被对土壤物理性质的影响[J]. 干旱区研究, 2022, 39(4): 1112-1121.
doi: 10.13866/j.azr.2022.04.12 |
[Zhao Chenguang, Li Huiying, Yu Tengfei, et al. Effects of artificial vegetation construction on soil physical properties in the northeastern edge of Tengger Desert[J]. Arid Zone Research, 2022, 39(4): 1112-1121. ]
doi: 10.13866/j.azr.2022.04.12 |
[1] | LU Li, GE Yanyan, LI Sheng, ZHANG Yun. Hydrochemical characteristics and enrichment mechanisms of high-arsenic groundwater in the Aksu River Basin, Xinjiang [J]. Arid Zone Research, 2025, 42(2): 258-273. |
[2] | ZHANG Jianing, ZHANG Jianjun, LAI Zongrui, ZHAO Jiongchang, HU Yawei, LI Yang, WEI Chaoyang. Effects of stand density on soil nutrients and microbial communities in Robinia pseudoacacia plantations [J]. Arid Zone Research, 2025, 42(2): 274-288. |
[3] | LEI Feiya, LI Xiaoshuang, TAO Ye, YIN Benfeng, RONG Xiaoying, ZHANG Jing, LU Yongxing, GUO Xing, ZHOU Xiaobing, ZHANG Yuanming. Characterization of soil multifunctionality and its determining factors under moss crust cover in the arid regions of Northwest China [J]. Arid Zone Research, 2024, 41(5): 812-820. |
[4] | LIU Rulong, ZHAO Yuanyuan, CHEN Guoqing, CHI Wenfeng, LIU Zhengjia. Assessment of habitat quality in the Yellow River Basin in Inner Mongolia from 1990 to 2020 [J]. Arid Zone Research, 2024, 41(4): 674-683. |
[5] | SU Zechen, SHAO Zhanlin. Influence and prediction of land use change on the space of arable land in arid zones: Taking Changji City as an example [J]. Arid Zone Research, 2024, 41(11): 1936-1945. |
[6] | MENG Chengfeng, ZHONG Tao, ZHENG Jianghua, WANG Nan, LIU Zexuan, REN Xiangyuan. Analysis of temporal and spatial characteristics and driving forces of Kunlun glacial lakes [J]. Arid Zone Research, 2023, 40(7): 1094-1106. |
[7] | WANG Peng, QIN Sitong, HU Huirong. Spatial-temporal evolution characteristics of land use change and habitat quality in the Lhasa River Basin over the past three decades [J]. Arid Zone Research, 2023, 40(3): 492-503. |
[8] | MA Haowen, WANG Yongfang, GUO Enliang. Remote sensing monitoring of aeolian desertification in Ongniud Banner based on GEE [J]. Arid Zone Research, 2023, 40(3): 504-516. |
[9] | WU Wanmin, LIU Tao, CHEN Xin. Seasonal changes of NDVI in the arid and semi-arid regions of Northwest China and its influencing factors [J]. Arid Zone Research, 2023, 40(12): 1969-1981. |
[10] | LIU Yanxue, QIAO Changlu. Study on evapotranspiration of cotton field under drip irrigation in oasis of arid region [J]. Arid Zone Research, 2023, 40(1): 152-162. |
[11] | GAO Jie,ZHAO Yong,YAO Junqiang,Dilinuer TUOLIEWUBIEKE,WANG Mengyuan. Spatiotemporal evolution of atmospheric water cycle factors in arid regions of Central Asia under climate change [J]. Arid Zone Research, 2022, 39(5): 1371-1384. |
[12] | RUAN Yongjian,WU Xiuqin. Evaluation of groundwater resource sustainability based on GRACE and GLDAS in arid region of Northwest China [J]. Arid Zone Research, 2022, 39(3): 787-800. |
[13] | HE Chaolu,LYU Haishen,ZHU Yonghua,LI Wentao,XIE Bingqi,XU Kaili,LIU Mingwen. Assessment of TIGGE precipitation forecast models in arid and semi-arid regions of China [J]. Arid Zone Research, 2022, 39(2): 368-378. |
[14] | LIU Shuainan,LI Guang,SONG Liangcui,YUAN Jianyu,XIE Mingjun,WEI Xingxing. Effects of early sowing and tillage measures on nitrogen and phosphorus in the soil supporting spring wheat in the semi-arid area of the Loess Plateau [J]. Arid Zone Research, 2021, 38(5): 1367-1375. |
[15] | ZHANG Anning,LIU Rentao,CHEN Wei,CHANG Haitao,JI Xueru. Effects of climatic factors on litter decomposition and soil fauna in arid regions [J]. Arid Zone Research, 2021, 38(3): 867-874. |
|