Arid Zone Research ›› 2024, Vol. 41 ›› Issue (11): 1921-1935.doi: 10.13866/j.azr.2024.11.12
• Ecology and Environment • Previous Articles Next Articles
WANG Shiwei1(), ZHANG Haobin1, GUO Wenbing2, MA Chao1,3,4()
Received:
2024-03-18
Revised:
2024-06-25
Online:
2024-11-15
Published:
2024-11-29
Contact:
MA Chao
E-mail:212204020073@home.hpu.edu.cn;mac@hpu.edu.cn
WANG Shiwei, ZHANG Haobin, GUO Wenbing, MA Chao. Effects of climate and mining activities on vegetation in open-pit mining in desertification grassland[J].Arid Zone Research, 2024, 41(11): 1921-1935.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Basic situation of the five open-pit coal mines"
研究区 | 乌兰哈达露天矿 | 经纬露天矿 | 武家塔露天矿 | 狼窝渠露天矿 | 鸿盛源露天矿 |
---|---|---|---|---|---|
位置 | 伊金霍洛旗 | 伊金霍洛旗 | 伊金霍洛旗 | 神木市 | 准格尔旗 |
采矿坑面积/hm2 | 119.71 | 186.16 | 185.01 | 0 | 156.52 |
排土场面积/hm2 | 1165.56 | 274.28 | 500.76 | 605.48 | 400.08 |
缓冲区面积/hm2 | 18263.60 | 13483.79 | 15415.13 | 14937.77 | 14244.35 |
初采年份 | 2006年 | 2008年 | 1996年 | 2011年 | 2014年 |
开采时长/a | 15 | 13 | 25 | 10 | 7 |
复垦时长/a | 12 | 11 | 13 | 7 | 4 |
排土场修复措施 | 人工修复 | 人工修复 | 人工修复 | 人工修复 | 人工修复 |
Tab. 2
Remote sensing image data information"
获取日期/年月-日 | 卫星 | 研究区 |
---|---|---|
2018-08-12 | Sentinel-2B | 经纬露天矿、武家塔露天矿、CA1 |
2018-08-22 | Sentinel-2B | 狼窝渠露天矿、鸿盛源露天矿、CA2 |
2018-09-21 | Sentinel-2B | 乌兰哈达露天矿、经纬露天矿、武家塔露天矿、狼窝渠露天矿、鸿盛源露天矿、CA1、CA2 |
2019-08-17 | Sentinel-2B | 狼窝渠露天矿、CA2 |
2019-08-27 | Sentinel-2B | 乌兰哈达露天矿、经纬露天矿、武家塔露天矿、鸿盛源露天矿、CA1 |
2019-09-26 | Sentinel-2B | 乌兰哈达露天矿、经纬露天矿、武家塔露天矿、狼窝渠露天矿、鸿盛源露天矿、CA1、CA2 |
2020-08-01 | Sentinel-2B | 鸿盛源露天矿、CA2 |
2020-08-26 | Sentinel-2A | 乌兰哈达露天矿、经纬露天矿、武家塔露天矿、狼窝渠露天矿 |
2020-09-15 | Sentinel-2A | 乌兰哈达露天矿、经纬露天矿、武家塔露天矿、狼窝渠露天矿、鸿盛源露天矿、CA1、CA2 |
2021-08-16 | Sentinel-2B | 乌兰哈达露天矿、经纬露天矿、武家塔露天矿、狼窝渠露天矿、鸿盛源露天矿、CA1、CA2 |
2021-09-10 | Sentinel-2A | 乌兰哈达露天矿、经纬露天矿、武家塔露天矿、狼窝渠露天矿、鸿盛源露天矿、CA2 |
2021-09-20 | Sentinel-2A | CA1 |
Tab. 3
Vegetation index calculation equations and their corresponding bands"
植被指数 | 表达式 | 使用波段 | 作用 | 优缺点 |
---|---|---|---|---|
NDVI | B8、B4 | 通过绿色植物对红光的吸收和对近红光 的反射,监测植被生理机能和生长状况 | 适用范围广,易受土壤背景影响 | |
EVI | B8、B4、B2 | 增强显示波段差异,监测植被生长状况 | 引入蓝光波段减少大气气溶胶散射的影响,计算复杂 | |
RENDVI | B6、B4 | 引入红边波段提高灵敏度,监测植被健康 生长状况 | 引入红边波段抗干扰增强,无法区分植被类型 | |
MSR_RE | B6、B5 | 利用两个红边波段反射率的比值增加对 植被敏感度,监测植被生长的细微变化 | 引入红边波段增强对叶片生物的敏感性,易受土壤背景物质的影响 | |
CIre | B8、B5 | 利用红波段与红边波段反射率的比值, 监测叶片中叶绿素含量 | 引入红边波段提高对叶绿素敏感性,对光照条件敏感 | |
TCARI | B5、B4、B3 | 通过红边、红、绿3个波段反射率的组合, 监测叶片中叶绿素含量的变化 | 引入红边波段提高对叶绿素敏感性,计算较复杂 |
[1] | 董霁红, 吉莉, 房阿曼. 典型干旱半干旱草原矿区生态累积效应[J]. 煤炭学报, 2021, 46(6): 1945-1956. |
[Dong Jihong, Ji Li, Fang Aman. Ecological cumulative effect of mining area in typical arid and semi-arid grassland[J]. Journal of China Coal Society, 2021, 46(6): 1945-1956. ] | |
[2] | Kong Z H, Stringer L, Paavola J, et al. Situating china in the global effort to combat desertification[J]. Land, 2021, 10(7): 702-724. |
[3] | 韩煜, 王琦, 赵伟, 等. 草原区露天煤矿开采对土壤性质和植物群落的影响[J]. 生态学杂志, 2019, 38(11): 3425-3433. |
[Han Yu, Wang Qi, Zhao Wei, et al. Effects of opencast coal mining on soil properties and plant communities of grassland[J]. Chinese Journal of Ecology, 2019, 38(11): 3425-3433. ] | |
[4] | 毕银丽, 彭苏萍, 杜善周. 西部干旱半干旱露天煤矿生态重构技术难点及发展方向[J]. 煤炭学报, 2021, 46(5): 1355-1364. |
[Bi Yinli, Peng Suping, Du Shanzhou. Technological difficulties and future directions of ecological reconstruction in open pit coal mine of the arid and semi-arid areas of Western China[J]. Journal of China Coal Society, 2021, 46(5): 1355-1364. ] | |
[5] |
张建华, 张琨, 刘勇, 等. 山西省露天煤矿复垦区典型人工林凋落物持水性能研究[J]. 干旱区研究, 2023, 40(12): 2043-2052.
doi: 10.13866/j.azr.2023.12.16 |
[Zhang Jianhua, Zhang Kun, Liu Yong, et al. Study on water-holding capacity of litters from typical artificial forests in reclaimed regions of the opencast coal mine in Shanxi Province[J]. Arid Zone Research, 2023, 40(12): 2043-2052. ]
doi: 10.13866/j.azr.2023.12.16 |
|
[6] | 胡振琪, 陈涛. 基于ERDAS的矿区植被覆盖度遥感信息提取研究——以陕西省榆林市神府煤矿区为例[J]. 西北林学院学报, 2008, 23(2): 164-167, 183. |
[Hu Zhenqi, Chen Tao. ERDAS aided exbraction of vegetation fraction from remote sensing information in coalmine area based—a case study of Shenfu coalmine[J]. Journal of Northwest Forestry University, 2008, 23(2): 164-167, 183. ] | |
[7] | 吴立新, 马保东, 刘善军. 基于SPOT卫星NDVI数据的神东矿区植被覆盖动态变化分析[J]. 煤炭学报, 2009, 34(9): 1217-1222. |
[Wu Lixin, Ma Baodong, Liu Shanjun. Analysis to vegetation coverage change in Shendong mining area with SPOT NDVI data[J]. Journal of China Coal Society, 2009, 34(9): 1217-1222. ] | |
[8] | 马保东, 陈绍杰, 吴立新, 等. 基于SPOT-VGT NDVI的矿区植被遥感监测方法[J]. 地理与地理信息科学, 2009, 25(1): 84-87. |
[Ma Baodong, Chen Shaojie, Wu Lixin, et al. Vegetation monitoring method in mining area based on SPOT-VGT NDVI[J]. Geography and Geo-information Science, 2009, 25(1): 84-87. ] | |
[9] | Anupma Prakash, Rajender Gupta. Land-use mapping and change detection in a coal mining area: A case study in the Jharia coalfield, India[J]. International Journal of Remote Sensing, 1998, 19(3): 391-410. |
[10] | Karan S K, Samadder S R, Maiti S K. Assessment of the capability of remote sensing and GIS techniques for monitoring reclamation success in coal mine degraded lands[J], Journal of Environmental Management, 2016, 182(44): 272-283. |
[11] | 张耀, 周伟. 利用多时相遥感图像动态监测矿区植被覆盖变化——以山西省平朔露天煤矿为例[J]. 西北林学院学报, 2016, 31(4): 206-212, 251. |
[Zhang Yao, Zhou Wei. Monitoring of vegetation coverage by multi-temporal images: A case study of Pingshuo coal mine[J]. Journal of Northwest Forestry University, 2016, 31(4): 206-212, 251. ] | |
[12] | Zhang M, Wang J M, Li S J. Tempo-spatial changes and main anthropogenic influence factors of vegetation fractional coverage in a large-scale opencast coal mine area from 1992 to 2015[J]. Journal of Cleaner Production, 2019, 232(27): 940-952. |
[13] | Erener A. Remote sensing of vegetation health for reclaimed areas of Seyitömer open cast coal mine[J]. International Journal of Coal Geology, 2011, 86(1): 20-26. |
[14] | Hui J W, Bai Z K, Ye B Y, et al. Remote sensing monitoring and evaluation of vegetation restoration in grassland mining areas: A case study of the Shengli mining area in Xilinhot City, China[J]. Land, 2021, 10(7): 743-761. |
[15] | Wang H H, Xie M M, Li H T, et al. Monitoring ecosystem restoration of multiple surface coal mine sites in China via Landsat images on Google Earth Engine[J]. Land Degradation & Development, 2021, 32(10): 2936-2950. |
[16] |
Zhu D Y, Chen T, Zhen N, et al. Monitoring the effects of open-pit mining on the eco-environment using a moving window-based remote sensing ecological index[J]. Environmental Science and Pollution Research International, 2020, 27(13): 15716-15728.
doi: 10.1007/s11356-020-08054-2 pmid: 32086733 |
[17] | 刘英, 胡霄, 岳辉, 等. 基于时间序列模型的戈壁荒漠露天矿生态环境评价[J]. 煤炭科学技术, 2023, 51(12): 125-139. |
[Liu Ying, Hu Xiao, Yue Hui, et al. Ecological environmental assessment of Gobi desert open-pit mine based on time series model[J]. Coal Science and Technology, 2023, 51(12): 125-139. ] | |
[18] | Xiao W, Zhang W K, Ye Y M, et al. Is underground coal mining causing land degradation and significantly damaging ecosystems in semi‐arid areas: A study from an ecological capital perspective[J]. Land Degradation & Development, 2020, 31(15): 1969-1989. |
[19] | Wu Q Y, Xu H N, Yang Y J, et al. Identifying structure change of vegetation under long-term disturbance in the Shendong mining area[J]. Environmental Earth Sciences, 2023, 82(19): 450-468. |
[20] | 周甲男, 马苏, 郑颖娟, 等. 基于生态产品价值视角的矿区植被恢复成效评估: 以神东矿区为例[J]. 环境科学研究, 2023, 36(9): 1728-1736. |
[Zhou Jianan, Ma Su, Zhen Yingjuan, et al. Evaluation of vegetation restoration effect in mining area from the perspective of ecosystem product value: A case study of Shendong mining area[J]. Research of Environmental Sciences, 2023, 36(9): 1728-1736. ] | |
[21] | 李晓婷, 杨丽帆, 邹友峰, 等. 采煤胁迫下干旱区植被生长周期红边指数动态变化[J]. 煤炭学报, 2021, 46(5): 1508-1520. |
[Li Xiaoting, Yang Lifan, Zou Youfeng, et al. Dynamic change of red edge vegetation index within a growth cycle in arid area under coal mining stress[J]. Journal of China Coal Society, 2021, 46(5): 1508-1520. ] | |
[22] | 毕银丽, 刘涛. 露天矿区植被协同演变多源数据时序分析——以准格尔矿区为例[J]. 煤炭科学技术, 2022, 50(1): 293-302. |
[Bi Yinli, Liu Tao. Time series analysis of multi-source data of coordinated evolution of vegetation in open-pit mining area: Taking Jungar Mining Area as an exampl[J]. Coal Science and Technology, 2022, 50(1): 293-302. ] | |
[23] |
Lu J J, Miao Y X, Shi W, et al. Evaluating different approaches to non-destructive nitrogen status diagnosis of rice using portable RapidSCAN active canopy sensor[J]. Scientific Reports, 2017, 7(1): 14073-14083.
doi: 10.1038/s41598-017-14597-1 pmid: 29074943 |
[24] | Elsayed Salah, Pablo Rischbe, Schmidhalter Urs. Comparing the performance of active and passive reflectance sensors to assess the normalized relative canopy temperature and grain yield of drought-stressed barley cultivars[J]. Field Crops Research, 2015, 177(38): 148-160. |
[25] | Wu C Y, Niu Z, Tang Q, et al. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation[J]. Agricultural and Forest Meteorology, 2008, 148(8): 1230-1241. |
[26] |
Gitelson A A, Gritz Y, Merzlyak M N. Relationships between leaf chlorophyll content and spectral reflectance and algo-rithms for non-destructive chlorophyll assessment in higher plant leaves[J]. Journal of Plant Physiology, 2003, 160(3): 271-282.
doi: 10.1078/0176-1617-00887 pmid: 12749084 |
[27] | Hunt E R, Daughtry C S T, Eitel J U H, et al. Remote sensing leaf chlorophyll content using a visible band index[J]. Agronomy Journal, 2011, 103(4): 1090-1099. |
[28] | Hird J N, Castilla G, Mcdermid G J, et al. A simple transformation for visualizing non-seasonal landscape change from dense time series of satellite data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(8): 3372-3383. |
[29] |
马超, 李晓婷, 项晓铭, 等. 浑善达克沙地腹地和边缘交错区NDVI演变对气候变化和人类活动的响应[J]. 资源科学, 2023, 45(1): 204-221.
doi: 10.18402/resci.2023.01.15 |
[Ma Chao, Li Xiaoting, Xiang Xiaoming, et al, Responses of NDVI evolution to climate change and human activities in the Hunshandake Sandy Land and its ecotones[J]. Resources Science, 2023, 45(1): 204-221. ]
doi: 10.18402/resci.2023.01.15 |
|
[30] | 王薇. 基于时序特征变化的矿山复绿遥感监测与评价[D]. 北京: 中国地质大学(北京), 2021. |
[Wang Wei. Remote Sensing Monitoring and Evaluation of Mine Regreening Based on Time Series Feature Change[D]. Beijing: China University of Geosciences Beijing, 2021. ] | |
[31] | 李军, 彭传盈, 张成业, 等. 基于大样本的露天开采植被扰动范围一般性统计规律——以神东煤炭基地为例[J]. 煤炭学报, 2023, 48(2): 975-985. |
[Li Jun, Peng Chuanying, Zhang Chengye, et al. General statistical rules of vegetation disturbance range by open-pit mining based on a large sample: A case study of Shendong coal base[J]. Journal of China Coal Society, 2023, 48(2): 975-985. ] | |
[32] | Zhang C Y, Zheng H Y, Li J, et al. A method for identifying the spatial range of mining disturbance based on contribution quantification and significance test[J]. International Journal of Environmental Research and Public Health, 2022, 19(9): 5176-5176. |
[33] | Sun X F, Yuan L G, Liu M, et al. Quantitative estimation for the impact of mining activities on vegetation phenology and identifying its controlling factors from Sentinel-2 time series[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 111(24): 102814-102827. |
[34] | Zheng K Y, Tan L S, Sun Y W, et al. Impacts of climate change and anthropogenic activities on vegetation change: Evidence from typical areas in China[J]. Ecological Indicators, 2021, 126(21): 107648-107662. |
[35] | Zhao D, Hou H P, Liu H Y, et al. Microbial community structure and predictive functional analysis in reclaimed soil with different vegetation types: The example of the Xiaoyi mine waste dump in Shanxi[J]. Land, 2023, 12(2): 456-470. |
[36] | 雷少刚, 夏嘉南, 卞正富, 等. 论露天矿区近自然生态修复[J]. 煤炭学报, 2024, 49(4): 2021-2030. |
[Lei Shaogang, Xia Jianan, Bian Zhengfu, et al. Near-natural ecological restoration in open-pit mine area[J]. Journal of China Coal Society, 2024, 49(4): 2021-2030. ] | |
[37] | 李树志, 李学良, 尹大伟. 碳中和背景下煤炭矿山生态修复的几个基本问题[J]. 煤炭科学技术, 2022, 50(1): 286-292. |
[Li Shuzhi, Li Xueliang, Yin Dawei. Several basic issues of ecological restoration of coal mines under background of carbon neutrality[J]. Coal Science and Technology, 2022, 50(1): 286-292. ] | |
[38] | 邢龙飞, 黄赳, 雷少刚, 等. 锡林浩特市胜利矿区近30 a植被覆盖度变化研究[J]. 河南理工大学学报(自然科学版), 2019, 38(3): 61-69. |
[Xing Longfei, Huang Jiu, Lei Shaogang, et al. Study on vegetation coverage change of Xilinhot’s Shengli mining area in recent 30 years[J]. Journal of Henan Polytechnic University (Natural Science), 2019, 38(3): 61-69. ] | |
[39] | 吴秦豫, 姚喜军, 梁洁, 等. 鄂尔多斯市煤矿区植被覆盖改善和退化效应的时空强度[J]. 干旱区资源与环境, 2022, 36(8): 101-109. |
[Wu Qinyu, Yao Xijun, Liang Jie, et al. Spatial and temporal intensity of vegetation cover improvement and degradation in coal mining areas of Erdos City[J]. Journal of Arid Land Resources and Environment, 2022, 36(8): 101-109. ] | |
[40] |
Wang S F, Cao Y G, Pietrzykowski M, et al. Spatial distribution of soil bulk density and its relationship with slope and vegetation allocation model in rehabilitation of dumping site in loess open-pit mine area[J]. Environmental Monitoring and Assessment, 2020, 192(11): 740-758.
doi: 10.1007/s10661-020-08692-6 pmid: 33128682 |
[1] | LI Kexuan, ZHANG Lei, LI Hao, ZHANG Enyue, LI Yuzhen, SONG Caiyun, LIU Geng. Identification of the key regions of spatial ecological restoration in the Northwest Shanxi based on the MSPA model and circuit theory [J]. Arid Zone Research, 2024, 41(9): 1593-1604. |
[2] | MA Longlong, YI Zhiyuan, WEI Caiyong, ZHOU Feng, LI Mingtao, QIAO Chenglong, DU Lingtong. Temporal and spatial characteristics of ecosystem water use efficiency and influencing factors in Yanchi County, Ningxia, China [J]. Arid Zone Research, 2024, 41(4): 650-660. |
[3] | YANG Yaqing, ZHANG Chong, ZHANG Jie, WANG Yudan. Changes in soil moisture and dryness and their response to climate change in the Guanzhong region [J]. Arid Zone Research, 2024, 41(2): 261-271. |
[4] | BAO Yubin,WANG Yaozong,LU Feng,LIU Zizeng,MA Dawei,YANG Yong,WU Juan,ZHANG Yongkang. Construction of an ecological security pattern and zoning optimization for territorial space in the Liupan Mountain Area [J]. Arid Zone Research, 2023, 40(7): 1172-1183. |
[5] | LIANG Boming, LIU Xin, HAO Yuanyuan, CHU Bin, TANG Zhuangsheng. Extraction of desert vegetation information based on five vegetation indices [J]. Arid Zone Research, 2023, 40(4): 647-654. |
[6] | Areziguli ROZI, Mamat SAWUT, HE Xugang, YE Xiaowen. Estimation of cotton leaf chlorophyll content based on combinations of multi-vegetation indices [J]. Arid Zone Research, 2023, 40(11): 1865-1874. |
[7] | CAO Yongxiang,MAO Donglei,Xue Jie,SU Songling,Kaimaierguli Abulaiti,CAI Fuyan. Dynamic changes and driving factors of vegetation cover in the oasis-desert ecotone: A case study of Cele, Xinjiang [J]. Arid Zone Research, 2022, 39(2): 510-521. |
[8] | LI Shengyu,FAN Jinglong,WANG Haifeng,CUI Kejun,LEI Jiaqiang. Ecological restoration and control technology schemes for hazards of windblown sand and snow along primary communication lines in the Mongolian Plateau [J]. Arid Zone Research, 2021, 38(6): 1760-1770. |
[9] | KONG Zijie,DENG Mingjiang,LING Hongbo,WANG Guangyan,XU Shengwu,WANG Zengru. Ecological security assessment and ecological restoration countermeasures in the dry-up area of the lower Tarim River [J]. Arid Zone Research, 2021, 38(4): 1128-1139. |
[10] | LI Ziyu,CHENG Qihui,HUANG Feng,GUO Zhentian. Spatiotemporal evolution of vegetation coverage in Alhagi sparsifolia Reserve in Turpan Basin, Xinjiang [J]. Arid Zone Research, 2021, 38(4): 1104-1110. |
[11] | WANG Kai,NA Enhang,ZHANG Liang,LIU Feng. Soil aggregates stability and fractal features on dump slopes of opencast coal mine in Funxin, China [J]. Arid Zone Research, 2021, 38(2): 402-410. |
[12] | SUN Yan-Ling, GUO Peng. Spatiotemporal Variation of Vegetation Coverage Index in North China during the Period from 1982 to 2006 [J]. , 2012, 29(2): 187-193. |
|