Arid Zone Research ›› 2024, Vol. 41 ›› Issue (5): 797-811.doi: 10.13866/j.azr.2024.05.08
• Land and Water Resources • Previous Articles Next Articles
FAN Qiuxuan1(), YANG Fucheng1, FU Jiangtao2, LIU Changyi1, HU Xiasong1(), XING Guangyan3, ZHAO Jimei3, ZHANG Peihao1
Received:
2023-10-26
Revised:
2024-02-04
Online:
2024-05-15
Published:
2024-05-29
FAN Qiuxuan, YANG Fucheng, FU Jiangtao, LIU Changyi, HU Xiasong, XING Guangyan, ZHAO Jimei, ZHANG Peihao. The physicochemical and strength characteristics of root-soil composite system in the Xiazangtan super large scale landslide area of the upper Yellow River[J].Arid Zone Research, 2024, 41(5): 797-811.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 3
Findings of the sample square survey of sampling points at different locations of the measured landslide topographic line in the study area"
取样点位置 | 取样点位置编号 | 优势植物类型组合 | 平均株高/cm | 平均地径/mm |
---|---|---|---|---|
滑坡体后壁顶部 | ① | 黄花棘豆+异针茅组合 | 3.85±1.83 | 1.65±0.70 |
滑坡体后缘 | ② | 异针茅+多裂委陵菜+黄花棘豆组合 | 4.68±1.81 | 1.38±0.23 |
③ | 蒲公英+芨芨草+异针茅+赖草组合 | |||
④ | 珠芽蓼+芨芨草+天蓝苜蓿+异针茅+沙蒿组合 | |||
⑤ | 糙喙苔草+异针茅+披针叶黄华+赖草+栉叶蒿+沙蒿+黄花棘豆+冷 地早熟禾+星毛委陵菜组合 | |||
⑥ | 沙蒿+无茎黄鹌菜+异针茅+糙喙苔草+黄花棘豆+冷地早熟禾组合 | |||
滑坡体中部 | ⑦ | 二裂委陵菜+异针茅+沙蒿+赖草组合 | 5.56±2.51 | 2.09±0.94 |
⑧ | 沙蒿+异针茅+冷地早熟禾组合 | |||
⑨ | 多裂委陵菜+冷地早熟禾+异针茅组合 | |||
⑩ | 冷地早熟禾+异针茅组合 | |||
⑪ | 冷地早熟禾+达乌里胡枝子+异针茅+黄花棘豆+多裂委陵菜组合 |
Tab. 4
Statistical results of testing the average content of nutrient elements in regional soils of landslides in the study area"
取样点位置 | pH | 有机质 /(g·kg-1) | 全氮 /(g·kg-1) | 全磷 /(g·kg-1) | 全钾 /(g·kg-1) | 碱解氮 /(mg·kg-1) | 速效磷 /(mg·kg-1) | 速效钾 /(mg·kg-1) |
---|---|---|---|---|---|---|---|---|
滑坡体后壁顶部 | 8.41 | 14.63 | 1.14 | 1.14 | 20.61 | 65.00 | 3.20 | 279.00 |
滑坡体后缘 | 7.99 | 39.11 | 2.65 | 1.73 | 24.29 | 162.00 | 5.42 | 192.40 |
滑坡体中部 | 8.25 | 17.95 | 1.37 | 1.58 | 21.74 | 75.60 | 3.50 | 137.00 |
Tab. 5
The results of soil particle analysis test at different positions of landslide in the study area"
取样点位置编号 | 土粒组成/% | d10/mm | d30/mm | d60/mm | Cu | Cc | 土体类型 | ||
---|---|---|---|---|---|---|---|---|---|
0.25~0.075 mm | 0.075~0.005 mm | <0.005 mm | |||||||
① | 14.0 | 83.4 | 2.6 | 0.012 | 0.030 | 0.045 | 3.75 | 1.67 | 粉土 |
④ | 21.3 | 76.1 | 2.6 | 0.009 | 0.024 | 0.041 | 4.56 | 1.56 | 粉土 |
⑦ | 28.4 | 65.7 | 5.9 | 0.006 | 0.022 | 0.045 | 7.50 | 1.79 | 粉土 |
⑩ | 34.5 | 62.9 | 2.6 | 0.011 | 0.022 | 0.053 | 4.82 | 0.83 | 粉土 |
Tab. 7
Test results of root-soil composite shear strength and its root parameter indexes for landslides in the study area"
取样点位置 | 平均粘聚力/kPa | 平均内摩擦角/(°) | 平均含根量/根 | 平均根径/mm | 平均干重/g |
---|---|---|---|---|---|
滑坡体后壁顶部 | 9.21±5.36 | 21.34±0.79 | 179±4.21 | 0.34±0.04 | 1.04±0.40 |
滑坡体后部 | 13.67±3.22 | 21.86±1.71 | 373±109.91 | 0.26±0.05 | 0.98±0.26 |
滑坡体中部 | 11.65±2.80 | 24.97±1.41 | 167±84.44 | 0.32±0.08 | 0.96±0.45 |
[1] | 王鸿翔, 杨克非, 刘静航, 等. 黄河上游近60年水沙演变及影响因素分析[J]. 中国农村水利水电, 2022(3): 86-93. |
[Wang Hongxiang, Yang Kefei, Liu Jinghang, et al. Evolution and influencing factors analysis of water and sediment evolution in the upper Yellow River in recent 60 years[J]. China Rural Water and Hydropower, 2022(3): 86-93.] | |
[2] | 周保. 黄河上游(拉干峡—寺沟峡段)特大型滑坡发育特征与群发机理研究[D]. 西安: 长安大学, 2010. |
[Zhou Bao. Research on Development Characteristic and Mass Mechanism of Superlarge Landslide in the Upper Yellow River[D]. Xi'an: Chang'an University, 2010.] | |
[3] | 周保, 彭建兵, 殷跃平, 等. 黄河上游拉干峡—寺沟峡段特大型滑坡及其成因研究[J]. 地质论评, 2014, 60(1): 138-144. |
[Zhou Bao, Peng Jianbing, Yin Yueping, et al. Research on large-scale landslides between Lagan Gorge and Sigou Gorge in the upper reaches of Yellow River[J]. Geological Review, 2014, 60(1): 138-144.] | |
[4] | 李芙林, 陈忠宇, 张志强. 青海滑坡初探[J]. 工程地质学报, 2005, 13(3): 300-304. |
[Li Fulin, Chen Zhongyu, Zhang Zhiqiang. Preliminary analysis of landslides in Qinghai[J]. Journal of Engineering Geology, 2005, 13(3): 300-304.] | |
[5] | 余芹芹, 乔娜, 卢海静, 等. 植物根系对土体加筋效应研究[J]. 岩石力学与工程学报, 2012, 31(S1): 3216-3223. |
[Yu Qinqin, Qiao Na, Lu Haijing, et al. Effect study of plant roots reinforcement on soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 3216-3223.] | |
[6] |
杨冲, 王春燕, 王文颖, 等. 青藏高原黄河源区高寒草地土壤营养特征变化及质量评价[J]. 生态环境学报, 2022, 31(5): 896-908.
doi: 10.16258/j.cnki.1674-5906.2022.05.005 |
[Yang Chong, Wang Chunyan, Wang Wenying, et al. Soil nutrient characteristics and quality evaluation of alpine grassland in the source area of the Yellow River on the Qinghai Tibet Plateau[J]. Ecology and Environmental Sciences, 2022, 31(5): 896-908.] | |
[7] | Du Y G, Ke X, Guo X W, et al. Soil and plant community characteristics under long term continuous grazing of different intensities in an alpine meadow on the Tibetan Plateau[J]. Biochemical Systematics and Ecology, 2019, 85(46): 72-75. |
[8] | Zhang B, Yu L F, Wang J S, et al. Effects of warming and nitrogen input on soil N2O emission from Qinghai-Tibetan Plateau: A synthesis[J]. Agricultural and Forest Meteorology, 2022, 326(59): 1-10. |
[9] |
彭艳, 孙晶远, 马素洁, 等. 藏北不同退化阶段高寒草甸植物群落特征与土壤养分特性[J]. 草业学报, 2022, 31(8): 49-60.
doi: 10.11686/cyxb2020475 |
[Peng Yan, Sun Jingyuan, Ma Sujie, et al. Plant community composition and soil nutrient status of degraded alpine meadow sites in Northern Tibet[J]. Acta Prataculturae Sinica, 2022, 31(8): 49-60.]
doi: 10.11686/cyxb2020475 |
|
[10] | Yuan Z Q, Jiang X J, Liu G J, et al. Responses of soil organic carbon and nutrient stocks to human-induced grassland degradation in a Tibetan alpine meadow[J]. Catena, 2019, 178(50): 40-48. |
[11] | Joshi Kr R, Garkoti C S. Influence of vegetation types on soil physical and chemical properties, microbial biomass and stoichiometry in the central Himalaya[J]. Catena, 2023, 222: 106835. |
[12] | 苑淑娟. 植物根系固土有效性研究综述[J]. 内蒙古水利, 2018(4): 76-77. |
[Yuan Shujuan. A review of research on the effectiveness of plant root sequestration[J]. Inner Mongolia Water Resources, 2018(4): 76-77.] | |
[13] | 蒋希雁, 何春晓, 周占学, 等. 生态护坡中根系对土体抗剪强度的影响[J]. 中国水土保持, 2019, 444(3): 43-46, 69. |
[Jiang Xiyan, He Chunxiao, Zhou Zhanxue, et al. Effect of roots on soil shear strength in ecological slope protection[J]. Soil and Water Conservation in China, 2019, 444(3): 43-46, 69.] | |
[14] | 申紫雁, 刘昌义, 胡夏嵩, 等. 黄河源区高寒草地不同深度土壤理化性质与抗剪强度关系研究[J]. 干旱区研究, 2021, 38(2): 392-401. |
[Shen Ziyan, Liu Changyi, Hu Xiasong, et al. Relationships between the physical and chemical proper ties of soil and the shear strength of root-soil composite systems at different soil depths in alpine grassland in the source region of the Yellow River[J]. Arid Zone Research, 2021, 38(2): 392-401.] | |
[15] | 杨馥铖, 刘昌义, 胡夏嵩, 等. 黄河源区不同退化程度高寒草地理化性质及复合体抗剪强度研究[J]. 干旱区研究, 2022, 39(2): 560-571. |
[Yang Fucheng, Liu Changyi, Hu Xiasong, et al. Study on physical and chemical properties and shear strength characteristics of root-soil composite system with different degradation degrees of alpine grassland in the source region of the Yellow River[J]. Arid Zone Research, 2022, 39(2): 560-571.] | |
[16] | Sun Y, Li H, Cheng Z F, et al. Experimental and numerical simulation study on mechanical properties of shallow slope root-soil composite in Qinghai area[J]. KSCE Journal of Civil Engineering, 2023, 27(7): 2834-2852. |
[17] | 于海梅, 辛芳, 李文捷. 尖扎地区谷子种植的气候适应性分析[J]. 青海农林科技, 2017(4): 63-65, 91. |
[Yu Haimei, Xin Fang, Li Wenjie. Climate adaptability analysis of millet in the jianzha region[J]. Science and Technology of Qinghai Agriculture and Forestry, 2017(4): 63-65, 91.] | |
[18] | 马国珍, 张丰雄, 刘世宝, 等. 青海省尖扎县夏藏滩移民安置区环境地质问题初析[J]. 青海国土经略, 2010(3): 25-26. |
[Ma Guozhen, Zhang Fengxiong, Liu Shibao, et al. A preliminary analysis of environmental and geologic problems in Xiazangtan resettlement area, Jianzha County, Qinghai Province, China[J]. Management & Strategy of Qinghai Land & Resources, 2010(3): 25-26.] | |
[19] | 殷志强, 许强, 赵无忌, 等. 黄河上游夏藏滩巨型滑坡演化过程及形成机制[J]. 第四纪研究, 2016, 36(2): 474-483. |
[Yin Zhiqiang, Xu Qiang, Zhao Wuji, et al. Study on the developmental characteristic, evolution processes and forming mechanism of Xiazangtan super large scale landslide of the upper reaches of Yellow River[J]. Quaternary Sciences, 2016, 36(2): 474-483.] | |
[20] | 贾傲, 郑梦娜, 陈之光, 等. 青藏高原雪白委陵菜(Potentilla nivea)叶片性状对海拔的响应[J]. 生态学杂志, 2023, 42(4): 769-779. |
[Jia Ao, Zheng Mengna, Chen Zhiguang, et al. Altitudinal variations of leaf traits of Potentilla nivea in the Qinghai-Tibet Plateau[J]. Chinese Journal of Ecology, 2023, 42(4): 769-779.] | |
[21] | 吴文斌, 杨鹏, 唐华俊, 等. 土地利用对土壤性质影响的区域差异研究[J]. 中国农业科学, 2007, 40(8): 1697-1702. |
[Wu Wenbin, Yang Peng, Tang Huajun, et al. Regional variability of effects of land use system on soil properties[J]. Scientia Agricultura Sinica, 2007, 40(8): 1697-1702.] | |
[22] | 李丹, 杨丽萍, 贾成朕. 大兴安岭不同林型地表死可燃物含水率特征及其影响因子[J]. 干旱气象, 2021, 39(1): 144-150. |
[Li Dan, Yang Liping, Jia Chengzhen. Characteristics of ground surface dead fuel moisture content for different stand types in Great Xing'an Mountains and relevant affecting factors[J]. Journal of Arid Meteorology, 2021, 39(1): 144-150.] | |
[23] |
刘昌义, 胡夏嵩, 窦增宁, 等. 黄河源区高寒草地植被根-土复合体抗剪强度试验及退化程度阈值确定[J]. 草业学报, 2017, 26(9): 14-26.
doi: 10.11686/cyxb2017005 |
[Liu Changyi, Hu Xiasong, Dou Zengning, et al. Shear strength tests of the root-soil composite system of alpine grasland vegetation at different stages of degradation and the determination of thresholds in the Yellow River source region[J]. Acta Prataculturae Sinica, 2017, 26(9): 14-26.]
doi: 10.11686/cyxb2017005 |
|
[24] | 周川, 胡广录, 邓丽媛, 等. 黑河中游不同景观类型土壤有机质与含水率变化特征[J]. 甘肃农业大学学报, 2021, 56(4): 126-135. |
[Zhou Chuan, Hu Guanglu, Deng Liyuan, et al. Variation characteristics of soil organic matter and water content in different types of landscape in the middle reaches of Heihe River[J]. Journal of Gansu Agricultural University, 2021, 56(4): 126-135.] | |
[25] | Wang W, He Z B, Du J, et al. Altitudinal patterns of species richness and flowering phenology in herbaceous community in Qilian Mountains of China[J]. International Journal of Biometeorology, 2022, 66(4): 1-11. |
[26] | Huang B C, Zhu M K, Liu Z Y, et al. The formation of small macro-aggregates induces soil organic carbon stocks in the restoration process used on cut slopes in alpine regions of China[J]. Land Degradation & Development, 2022, 33(16): 3283-3293. |
[27] | Zhang J, Chen H S, Fu Z Y, et al. Effects of vegetation restoration on soil properties along an elevation gradient in the karst region of southwest China[J]. Agriculture, Ecosystems & Environment, 2021, 320(39): 1-13. |
[28] | 刘丝雨, 李晓兵, 李梦圆, 等. 内蒙古典型草原植被和土壤特性对放牧强度的响应[J]. 中国草地学报, 2021, 43(9): 23-31. |
[Liu Siyu, Li Xiaobing, Li Mengyuan, et al. The response of vegetation and soil properties to grazing intensity in typical steppe of Inner Mongolia[J]. Chinese Journal of Grassland, 2021, 43(9): 23-31.] | |
[29] | Qin Y Y, Feng Q, Holden M N, et al. Variation in soil organic carbon by slope aspect in the middle of the Qilian Mountains in the upper Heihe River Basin, China[J]. Catena, 2016, 147(44): 308-314. |
[30] | 李强, 何国兴, 文铜, 等. 东祁连山高寒草甸土壤理化性质对海拔和坡向的响应及其与植被特征的关系[J]. 干旱区地理, 2022, 45(5): 1559-1569. |
[Li Qiang, He Guoxing, Wen Tong, et al. Response of soil physical and chemical properties to altitude and aspect of alpine meadow in the eastern Qilian Mountains and their relationships with vegetation characteristics[J]. Arid Land Geography, 2022, 45(5): 1559-1569.] | |
[31] | Zhang W, Gao D X, Chen Z X, et al. Substrate quality and soil environmental conditions predict litter decomposition and drive soil nutrient dynamics following afforestation on the Loess Plateau of China[J]. Geoderma, 2018, 325(52): 152-161. |
[32] | 刘西刚, 王勇辉, 焦黎, 等. 夏尔希里自然保护区草地表层土壤理化性质与海拔高度的关系[J]. 生态与农村环境学报, 2019, 35(6): 773-780. |
[Liu Xigang, Wang Yonghui, Jiao Li, et al. Study on the relationship between phvsical and chemical properties and altitude of grassland surface soil in Xarxili Nature Reserve[J]. Journal of Ecology and Rural Environment, 2019, 35(6): 773-780.] | |
[33] | 孙莉英, 栗清亚, 裴亮, 等. 地形因子对土壤理化性质和植物种类的影响[J]. 灌溉排水学报, 2020, 39(7): 120-127. |
[Sun Liying, Li Qingya, Pei Liang, et al. Effects of topographic factors on soil physical and chemical properties and plant species[J]. Journal of Irrigation and Drainage, 2020, 39(7): 120-127.] | |
[34] |
Aström M, Dynesius M, Hylander k, et al. Slope aspect modifies community responses to clear-cutting in boreal forests[J]. Ecology, 2007, 88(3): 749-758.
pmid: 17503602 |
[35] |
付江涛, 赵吉美, 刘昌义, 等. 坡位对优势植物分布与根系力学特性影响[J]. 草地学报, 2023, 31(7): 2020-2030.
doi: 10.11733/j.issn.1007-0435.2023.07.012 |
[Fu Jiangtao, Zhao Jimei, Liu Changyi, et al. Impact of slope position on the distribution and biomechanical properties of roots of dominant herbs[J]. Acta Agrestia Sinica, 2023, 31(7): 2020-2030.]
doi: 10.11733/j.issn.1007-0435.2023.07.012 |
|
[36] | Ferrari R F, Schaefer C E G R, Pereira A B, et al. Coupled soil-vegetation changes along a topographic gradient on King George Island, maritime Antarctica[J]. Catena, 2021, 198: 105038. |
[37] | 邢书昆, 张光辉, 朱平宗. 黄土丘陵沟壑区退耕年限对根—土复合体抗剪强度的影响[J]. 水土保持学报, 2021, 35(4): 41-48, 54. |
[Xing Shukun, Zhang Guanghui, Zhu Pingzong. Effects of vegetation restoration age on shear strength of root-soil system in hilly and gully region of the loess plateau[J]. Journal of Soil and Water Conservation, 2021, 35(4): 41-48, 54.] | |
[38] | 刘益良, 刘晓立, 付旭, 等. 植物根系对低液限粉质黏土边坡浅层土体抗剪强度影响的试验研究[J]. 工程地质学报, 2016, 24(3): 384-390. |
[Liu Yiliang, Liu Xiaoli, Fu Xu, et al. Experimental study on influence of plant roots to shear strength of low liquid limit silty clay at shallow depth of slope[J]. Journal of Engineering Geology, 2016, 24(3): 384-390.] |
|