Arid Zone Research ›› 2024, Vol. 41 ›› Issue (5): 812-820.doi: 10.13866/j.azr.2024.05.09
• Plant Ecology • Previous Articles Next Articles
LEI Feiya1,2(), LI Xiaoshuang1, TAO Ye3, YIN Benfeng3, RONG Xiaoying3, ZHANG Jing3, LU Yongxing3, GUO Xing3, ZHOU Xiaobing3(), ZHANG Yuanming3
Received:
2024-02-06
Revised:
2024-03-17
Online:
2024-05-15
Published:
2024-05-29
Contact:
ZHOU Xiaobing
E-mail:2683138732@qq.com;zhouxb@ms.xjb.ac.cn
LEI Feiya, LI Xiaoshuang, TAO Ye, YIN Benfeng, RONG Xiaoying, ZHANG Jing, LU Yongxing, GUO Xing, ZHOU Xiaobing, ZHANG Yuanming. Characterization of soil multifunctionality and its determining factors under moss crust cover in the arid regions of Northwest China[J].Arid Zone Research, 2024, 41(5): 812-820.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Geographic, vegetation, soil and climatic information of the eight sampling sites"
样点 | 经度/(°) | 纬度/(°) | 海拔/m | 植被盖度 | 土壤类型 | 结皮盖度 | 结皮类型 | 土壤粒级分布/% | 年均 降水/mm | 年均 气温/℃ | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
粉粒 | 砂粒 | 石砾 | ||||||||||
S1 | 87.15417 | 45.3023 | 461.79 | 0.05 | 简育砂性土 | 0.74 | 藻-地-藓 | 4.94 | 67.09 | 27.98 | 91.50 | 8.82 |
S2 | 87.67692 | 45.2478 | 575.22 | 0.01 | 简育砂性土 | 0.84 | 藻-地-藓 | 4.61 | 83.08 | 12.31 | 101.03 | 8.48 |
S3 | 88.30511 | 45.2636 | 729.83 | 0.04 | 简育砂性土 | 0.85 | 藻-地-藓 | 1.94 | 95.25 | 2.81 | 125.50 | 7.65 |
S4 | 108.5659 | 38.8198 | 1391.35 | 0.18 | 钙积潜育土 | 0.43 | 藻-地-藓 | 2.03 | 91.14 | 6.83 | 209.00 | 8.67 |
S5 | 110.2118 | 39.0136 | 1250.04 | 0.01 | 简育砂性土 | 0.45 | 藻-地-藓 | 0.93 | 81.03 | 18.04 | 255.00 | 9.18 |
S6 | 103.8205 | 40.8864 | 1332.37 | 0.02 | 简育石膏土 | <0.10 | 藻-地-藓 | 1.78 | 82.66 | 15.56 | 64.50 | 8.77 |
S7 | 108.9267 | 37.9791 | 1158.39 | 0.01 | 过渡性红砂土 | <0.10 | 藻-地-藓 | 3.42 | 75.13 | 21.45 | 257.00 | 10.07 |
S8 | 104.8801 | 37.5025 | 1508.13 | 0.04 | 简育砂性土 | 0.23 | 藻-地-藓 | 0.97 | 88.95 | 10.07 | 146.15 | 9.50 |
[1] | Rodriguez-Caballero E, Belnap J, Budel B, et al. Dryland photoautotrophic soil surface communities endangered by global change[J]. Nature Geoscience, 2018, 11(3): 185-189. |
[2] |
蒙文萍, 戴全厚, 冉景丞. 藓植物岩溶作用研究进展[J]. 植物生态学报, 2019, 43(5): 396-407.
doi: 10.17521/cjpe.2019.0020 |
[Meng Wenping, Dai Quanhou, Ran Jingcheng. A review on the process of bryophyte karstification[J]. Chinese Journal of Plant Ecology, 2019, 43(5): 396-407.]
doi: 10.17521/cjpe.2019.0020 |
|
[3] | Bowker M A, Reed S C, Maestre F T, et al. Biocrusts: The living skin of the earth[J]. Plant and Soil, 2018, 429(1-2): 1-7. |
[4] | Gao L Q, Bowker M A, Sun H, et al. Linkages between biocrust development and water erosion and implications for erosion model implementation[J]. Geoderma, 2020, 357: 113973. |
[5] | Li S L, Bowker M A, Xiao B. Biocrusts enhance non-rainfall water deposition and alter its distribution in dryland soils[J]. Journal of Hydrology, 2021, 595: 126050. |
[6] | Zhou X B, Tao Y, Yin B F, et al. Nitrogen pools in soil covered by biological soil crusts of different successional stages in a temperate desert in Central Asia[J]. Geoderma, 2020, 366: 114166. |
[7] | Hu R, Wang X P, Xu J S, et al. The mechanism of soil nitrogen transformation under different biocrusts to warming and reduced precipitation: From microbial functional genes to enzyme activity[J]. Science of the Total Environment, 2020, 722: 137849. |
[8] | 张雨虹, 张韶阳, 张树煇, 等. 毛乌素沙地藓类结皮对沙化土壤性质和细菌群落的影响[J]. 土壤学报, 2021, 58(6): 1585-1597. |
[Zhang Yuhong, Zhang Shaoyang, Zhang Shuhui, et al. Effect of moss crust on sandy soil properties and bacterial community in Mu Us Sandy Land[J]. Acta Pedologica Sinica, 2021, 58(6): 1585-1597.] | |
[9] | Lan S B, Zhang Q Y, Wu L, et al. Artificially accelerating the reversal of desertification: Cyanobacterial inoculation facilitates the succession of vegetation communities[J]. Environment Science & Technology, 2014, 48(1): 307-315. |
[10] | Bünemann E K, Bongiorno G, Bai Z G, et al. Soil quality-A critical review[J]. Soil Biology & Biochemistry, 2018, 120: 105-125. |
[11] | Glenk K, Mcvittie A, Moran D. Soil and Soil Organic Carbon Within An Ecosystem Service Approach Linking Biophysical and Economic Data[M]. Cupar: Scottish Agricultural College, 2012. |
[12] | 张世航, 陶冶, 陈玉森, 等. 准噶尔荒漠土壤多功能性的空间变异特征及其驱动因素[J]. 生物多样性, 2022, 30(8): 140-150. |
[Zhang Shihang, Tao Ye, Chen Yusen, et al. Spatial pattern of soil multifunctionality and its correlation with environmental and vegetation factors in the Junggar Desert, China[J]. Biodiversity Science, 2022, 30(8): 140-150.] | |
[13] | Su Y G, Liu J, Zhang Y M, et al. More drought leads to a greater significance of biocrusts to soil multifunctionality[J]. Functional Ecology, 2021, 35(4): 989-1000. |
[14] | Zhang Q, Yin B F, Zhang S J, et al. Moss crusts mitigate the negative impacts of shrub mortality on the nutrient multifunctionality of desert soils[J]. Soil Science Society of America Journal, 2023, 88(1): 166-179. |
[15] | Zhou H, Gao Y, Jia X H, et al. Network analysis reveals the strengthening of microbial interaction in biological soil crust development in the Mu Us Sandy Land, northwestern China[J]. Soil Biology & Biochemistry, 2020, 144: 107782. |
[16] | Eldridge D J, Delgado-Baquerizo M, Quero J L, et al. Surface indicators are correlated with soil multifunctionality in global drylands[J]. Journal of Applied Ecology, 2020, 57(2): 424-435. |
[17] | Zhang S H, Chen Y S, Zhou X B, et al. Spatial patterns and drivers of ecosystem multifunctionality in China: Arid vs. humid regions[J]. Science of The Total Environment, 2024, 920: 170868. |
[18] | Hu W G, Ran J Z, Dong L W, et al. Aridity-driven shift in biodiversity-soil multifunctionality relationships[J]. Nature Communications, 2021, 12(1): 5350. |
[19] | Yan Y Z, Zhang Q, Buyantuev A, et al. Plant functional β diversity is an important mediator of effects of aridity on soil multifunctionality[J]. Science of the Total Environment, 2020, 726: 138529. |
[20] |
Durán J, Delgado-Baquerizo M, Dougill A J, et al. Temperature and aridity regulate spatial variability of soil multifunctionality in drylands across the globe[J]. Ecology, 2018, 99(5): 1184-1193.
doi: 10.1002/ecy.2199 pmid: 29484631 |
[21] | Kakeh J, Sanaei A, Sayer E J, et al. Biocrust diversity enhances dryland saline soil multifunctionality[J]. Land Degradation & Development, 2022, 34(2): 521-533. |
[22] | Zhang S H, Chen Y S, Lu Y X, et al. Spatial variability and driving factors of soil multifunctionality in drylands of China[J]. Regional Sustainability, 2022, 3: 223-232. |
[23] | 陈亚宁, 杨青, 罗毅, 等. 西北干旱区水资源问题研究思考[J]. 干旱区地理, 2012, 35(1): 1-9. |
[Chen Yaning, Yang Qing, Luo Yi, et al. Ponder on the issues of water resources in the arid region of Northwest China[J]. Arid Land Geography, 2012, 35(1): 1-9.] | |
[24] | 郭泽呈, 魏伟, 石培基, 等. 中国西北干旱区土地沙漠化敏感性时空格局[J]. 地理学报, 2020, 75(9): 1949-1965. |
[Guo Zecheng, Wei Wei, Shi Peiji, et al. Spatiotemporal changes of land desertification sensitivity in the arid region of Northwest China[J]. Acta Geographica Sinica, 2020, 75(9): 1949-1965.] | |
[25] | Sanderson M A, Skinner R H, Barker D J, et al. Plant species diversity and management of temperate forage and grazing land ecosystems[J]. Crop Science, 2004, 44(4): 1132-1144. |
[26] |
Maestre F T, Quero J L, Gotelli N J, et al. Plant species richness and ecosystem multifunctionality in global drylands[J]. Science, 2012, 335(6065): 214-218.
doi: 10.1126/science.1215442 pmid: 22246775 |
[27] | Soliveres S, Maestre F T, Eldridge D J, et al. Plant diversity and ecosystem multifunctionality peak at intermediate levels of woody cover in global drylands[J]. Global Ecology Biogeography, 2014, 23(12): 1408-1416. |
[28] | Valencia E, Maestre v, le Bagousse-Pinguet Y, et al. Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands[J]. New Phytolgist, 2015, 206(2): 660-671. |
[29] |
陶冶, 刘耀斌, 吴甘霖, 等. 准噶尔荒漠区域尺度浅层土壤化学计量特征及其空间分布格局[J]. 草业学报, 2016, 25(7): 13-23.
doi: 10.11686/cyxb2016009 |
[Tao Ye, Liu Yaobin, Wu Ganlin, et al. Regional-scale ecological stoichiometric characteristics and spatial distribution patterns of key elements in surface soils in the Junggar Desert, China[J]. Acta Prataculturae Sinica, 2016, 25(7): 13-23.]
doi: 10.11686/cyxb2016009 |
|
[30] | Ding J Y, Eldridge D J. Climate and plants regulate the spatial variation in soil multifunctionality across a climatic gradient[J]. Catena, 2021, 201: 105233. |
[31] | Rodell M, Houser P R, Jambor U, et al. The global land data assimilation system[J]. Bulletion of the American Meteorological Society, 2004, 85(3): 381-394. |
[32] | Housman D C, Powers H H, Collins A D, et al. Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert[J]. Journal Arid Environment, 2006, 66(4): 620-634. |
[33] | Elbert W, Weber B, Burrows S, et al. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen[J]. Nature Geoscience, 2012, 5(7): 459-462. |
[34] | Zhao Y, Xu M, Belnap J. Potential nitrogen fixation activity of different aged biological soil crusts from rehabilitated grasslands of the hilly Loess Plateau, China[J]. Journal of Arid Environments, 2010, 74(10): 1186-1191 |
[35] | 高丽倩, 赵允格, 许明祥, 等. 生物土壤结皮演替对土壤生态化学计量特征的影响[J]. 生态学报, 2018, 38(2): 678-688. |
[Gao Liqian, Zhao Yunge, Xu Mingxiang, et al. The effects of biological soil crust succession on soil ecological stoichiometry characteristics[J]. Acta Ecologica Sinica, 2018, 38(2): 678-688.] | |
[36] | Zhang B C, Zhou X B, Zhang Y M. Responses of microbial activities and soil physical-chemical properties to the successional process of biological soil crusts in the Gurbantunggut Desert, Xinjiang[J]. Journal Arid Land, 2015, 7(1): 101-109. |
[37] |
Ghiloufi W, Seo J, Kim J, et al. Effects of biological soil crusts on enzyme activities and microbial community in soils of an arid ecosystem[J]. Microbial Ecology, 2019, 77(1): 201-216.
doi: 10.1007/s00248-018-1219-8 pmid: 29922904 |
[38] | Gao L Q, Bowker M A, Xu M X, et al. Biological soil crusts decrease erodibility by modifying inherent soil properties on the Loess Plateau, China[J]. Soil Biology & Biochemistry, 2017, 105: 49-58. |
[39] | 李宁宁, 张光辉, 王浩, 等. 黄土丘陵沟壑区生物结皮对土壤抗蚀性能的影响[J]. 中国水土保持科学, 2020, 18(1): 42-48. |
[Li Ningning, Zhang Guanghui, Wang Hao, et al. Soil anti-erodibility influenced by biological crusts in Loess Hilly and Gully Region[J]. Science of Soil and Water Conservation, 2020, 18(1): 42-48.] | |
[40] | Liu L C, Li S Z, Duan Z H, et al. Effects of microbiotic crusts on dew deposition in the restored vegetation area at Shapotou, Northwest China[J]. Journal of Hydrology, 2006, 328(1-2): 331-337. |
[41] | Zhang J, Zhang Y M, Downing A, et al. The influence of biological soil crusts on dew deposition in Gurbantunggut Desert, Northwestern China[J]. Journal of Hydrology, 2009, 379(3-4): 220-228. |
[42] | Moyano F E, Manzoni S, Chenu C. Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models[J]. Soil Biology Biochemistry, 2013, 59: 72-85. |
[43] | Chen Y L, Xu Z W, Hu H W, et al. Responses of ammonia-oxidizing bacteria and archaea to nitrogen fertilization and precipitation increment in a typical temperate steppe in Inner Mongolia[J]. Applied Soil Ecology, 2013, 68: 36-45. |
[44] | Mcdaniel M D, Kaye J P, Kaye M W. Increased temperature and precipitation had limited effects on soil extracellular enzyme activities in a post-harvest forest[J]. Soil Biology & Biochemistry, 2013, 56: 90-98. |
[45] | Zhang W, Gao D X, Chen Z X, et al. Substrate quality and soil environmental conditions predict litter decomposition and drive soil nutrient dynamics following afforestation on the Loess Plateau of China[J]. Geoderma, 2018, 325: 152-161. |
[46] | Wang Y N, Li F Y, Song X, et al. Changes in litter decomposition rate of dominant plants in a semi-arid steppe across different land use types: Soil moisture, not home-field advantage, plays a dominant role[J]. Agriculture, Ecosystems & Environment, 2020, 303: 104989. |
[47] | Zhou X H, Zhou, L Y, Nie Y Y, et al. Similar responses of soil carbon storage to drought and irrigation in terrestrial ecosystems but with contrasting mechanisms: A meta-analysis[J]. Agriculture, Ecosystems & Environment, 2016, 228: 70-81. |
[48] | Ren C J, Zhao F Z, Shi Z, et al. Differential responses of soil microbial biomass and carbon-degrading enzyme activities to altered precipitation[J]. Soil Biology & Biochemistry, 2017, 115: 1-10. |
[49] | Delgado-Baquerizo M, Maestre F T, Gallardo A, et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands[J]. Nature, 2013, 502(7473): 672-676. |
[1] | ZHANG Wenrui, SUN Dongyuan, WANG Yike, YANG Jun, LAN Lijun, JIN Hujia, XU Yu. Coupling relationship and spatiao-temporal differentiation of the water resources-ecological environment-social economic system in the Hexi Corridor [J]. Arid Zone Research, 2024, 41(9): 1527-1537. |
[2] | WU Siyuan, HAO Lina. Changes in vegetation cover and driving factors in the Yellow River Basin from 2001 to 2021 [J]. Arid Zone Research, 2024, 41(8): 1373-1384. |
[3] | ZHOU Jianwei, LUO Jun, MA Xueyang. Spatio-temporal evolution and driving factors of land use and ecosystem service value in the Lhasa River Basin, China [J]. Arid Zone Research, 2024, 41(6): 1021-1031. |
[4] | ZHAO Dongying, MENG Zhongju, MENG Ruibing, MA Ze. Dynamic change characteristics and driving forces of vegetation cover in the Ulan Buhe Desert along the Yellow River [J]. Arid Zone Research, 2024, 41(4): 639-649. |
[5] | XU Mingjing, FENG Qiang, LYU Meng. Tradeoffs of ecosystem services and their influencing factors: A case study of the Shanxi Section of the Yellow River Basin [J]. Arid Zone Research, 2024, 41(3): 467-479. |
[6] | CHENG Qiulian, LIU Jie, YANG Zhiwei, ZHANG Tianyi, WANG Bin. Spatial distribution and factor analysis of avalanche in the Aerxiangou section of the Duku expressway [J]. Arid Zone Research, 2024, 41(2): 220-229. |
[7] | LIU Yidan, YAO Xiaojun, LI Zongxing, HU Jiayu. Impacts of climate change and land use/cover change on the net primary productivity of vegetation in Hexi Region, Northwest China [J]. Arid Zone Research, 2024, 41(1): 169-180. |
[8] | WEN Miaoxia, HE Xuegao, LIU Huan, ZHANG Jing, LUO Chen, JIA Fengming, WANG Yigui, HU Yunyun. Analysis of the spatiotemporal variation characteristics and driving factors of grassland vegetation cover in Ningxia based on geographical detectors [J]. Arid Zone Research, 2023, 40(8): 1322-1332. |
[9] | MO Qiuxia, SONG Wei, BU Chongfeng, WANG Chun, WANG Heming, LI Yahong. Differences in moss crust development between Artemisia ordosica and Salix pasmmophia shrubs [J]. Arid Zone Research, 2023, 40(6): 979-987. |
[10] | CHEN Jiawei, CHU Jianmin, GAN Honghao, XU Lei, GONG Shuai, LIU Hao, WANG Yingxin, YANG Hongxiao, XU Xiaoqing, QI Danhui. Asociation characteristics of Amygdalus pedunculata and the environmental factors driving them in Otindag Sandy Land [J]. Arid Zone Research, 2023, 40(5): 777-784. |
[11] | REN Liwen, WANG Xingtao, LIU Mingchun, WANG Dawei. Temporal and Spatial changes and the driving factors of vegetation NPP in Shiyang River Basin [J]. Arid Zone Research, 2023, 40(5): 818-828. |
[12] | LI Xinlei, LI Ruiping, WANG Xiuqing, WANG Sinan, WANG Chengkun. Spatiotemporal change and analysis of factors driving forest-grass vegetation coverage in Hetao Irrigation District based on geographical detector [J]. Arid Zone Research, 2023, 40(4): 623-635. |
[13] | DONG Hanlin, WANG Wenting, XIE Yun, Aydana YESINALI, JIANG Yuantian, XU Jiaqi. Climate dry-wet conditions, changes, and their driving factors in Xinjiang [J]. Arid Zone Research, 2023, 40(12): 1875-1884. |
[14] | ZHANG Haochen,SA Chula,MENG Fanhao,LUO Min,WANG Mulan,GAO Hongdou,ADIYA Saruulzaya. Dynamic changes and driving factors of the surface freeze-thaw index in Inner Mongolia [J]. Arid Zone Research, 2022, 39(6): 1996-2008. |
[15] | YIN Mingcai,ZHU Hao,HU Yuanzhao,LI Zhenzhong,ZHANG Jishi. Analysis of various characteristics and driving factors of gray water footprint in Gansu Province [J]. Arid Zone Research, 2022, 39(6): 1810-1818. |
|