Arid Zone Research ›› 2021, Vol. 38 ›› Issue (4): 1020-1030.doi: 10.13866/j.azr.2021.04.13
• Soil Resources • Previous Articles Next Articles
ZHOU Linhu1(),WANG Haoyu2,ZHANG Binglai1,QI Zhaoxin1,CAO Rongtai1,FAN Yanbin1(),SUN Shenhai1,LIU Yuping1
Received:
2020-10-31
Revised:
2020-12-16
Online:
2021-07-15
Published:
2021-08-03
Contact:
Yanbin FAN
E-mail:18997295192@163.com;fyb1981@126.com
ZHOU Linhu,WANG Haoyu,ZHANG Binglai,QI Zhaoxin,CAO Rongtai,FAN Yanbin,SUN Shenhai,LIU Yuping. The relationship between ECa of sulfate saline soil and moisture content, salt content, and particle size[J].Arid Zone Research, 2021, 38(4): 1020-1030.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
ECa of soil under different moisture content and particle size conditions /(mS·cm-1)"
粒径/mm | 含水率/% | ||||
---|---|---|---|---|---|
5 | 10 | 15 | 20 | 25 | |
<0.075 | 0.03±0.01 | 0.25±0.05 | 0.48±0.07 | 0.76±0.07 | 1.01±0.09 |
0.075~0.1 | 0.04±0.01 | 0.29±0.10 | 0.55±0.13 | 0.80±0.17 | 1.03±0.12 |
0.1~0.25 | 0.05±0.01 | 0.33±0.16 | 0.60±0.18 | 0.84±0.29 | 1.05±0.24 |
0.25~0.5 | 0.06±0.02 | 0.38±0.11 | 0.67±0.24 | 0.89±0.46 | 1.09±0.25 |
0.5~1 | 0.07±0.02 | 0.42±0.12 | 0.73±0.19 | 0.95±0.21 | 1.13±0.28 |
1~2 | 0.09±0.02 | 0.50±0.17 | 0.76±0.20 | 0.97±0.13 | 1.17±0.23 |
Tab. 2
Fitting equation of ECa of soil and moisture content under different particle size conditions"
粒径/mm | 拟合方程 | 拟合优度(R2) | 残差平方和(RSS) | 显著性系数(P) |
---|---|---|---|---|
<0.075 | y=0.0071x1.5470 | 0.9900 | 0.0046 | 1.4213×10-4 |
0.075~0.1 | y=0.0116x1.4018 | 0.9837 | 0.0076 | 2.6167×10-4 |
0.1~0.25 | y=0.0164x1.3024 | 0.9773 | 0.0108 | 3.8852×10-4 |
0.25~0.5 | y=0.0230x1.2099 | 0.9673 | 0.0164 | 6.0342×10-4 |
0.5~1 | y=0.0292x1.1499 | 0.9576 | 0.0228 | 8.3150×10-4 |
1~2 | y=0.0385x1.0717 | 0.9559 | 0.0235 | 7.6895×10-4 |
Tab. 3
ECa of soil under different particle size and salt content conditions /(mS·cm-1)"
粒径/mm | 含盐量/% | ||||
---|---|---|---|---|---|
0.18 | 3.18 | 6.18 | 9.18 | 12.18 | |
<0.075 | 0.16±0.04 | 0.87±0.11 | 0.93±0.10 | 1.11±0.17 | 1.57±0.32 |
0.075~0.1 | 0.17±0.04 | 0.90±0.13 | 0.97±0.09 | 1.19±0.12 | 1.64±0.25 |
0.1~0.25 | 0.19±0.06 | 0.92±0.08 | 1.01±0.12 | 1.28±0.16 | 1.70±0.33 |
0.25~0.5 | 0.20±0.04 | 0.98±0.14 | 1.08±0.16 | 1.37±0.21 | 1.73±0.20 |
0.5~1 | 0.22±0.05 | 1.07±0.18 | 1.23±0.21 | 1.44±0.32 | 1.76±0.38 |
1~2 | 0.24±0.09 | 1.14±0.20 | 1.29±0.23 | 1.59±0.40 | 1.81±0.36 |
Tab. 4
Fitting equation between ECa of soil and salt content under different particle size conditions"
粒径/mm | 拟合方程 | 拟合优度(R2) | 残差平方和(RSS) | 显著性系数(P) |
---|---|---|---|---|
<0.075 | y=-0.0030x2+0.1393x+0.2367 | 0.8232 | 0.0918 | 0.0884 |
0.075~0.1 | y=-0.0033x2+0.1479x+0.2429 | 0.8480 | 0.0868 | 0.0760 |
0.1~0.25 | y=-0.0035x2+0.1558x+0.2532 | 0.8816 | 0.0727 | 0.0592 |
0.25~0.5 | y=-0.0052x2+0.1788x+0.2571 | 0.8911 | 0.0703 | 0.0544 |
0.5~1 | y=-0.0080x2+0.2141x+0.2714 | 0.8941 | 0.0706 | 0.0529 |
1~2 | y=-0.0096x2+0.2384x+0.2806 | 0.9133 | 0.0631 | 0.0433 |
Tab. 5
ECa of soil value under different moisture content and salt content conditions /(mS·cm-1)"
含盐量/% | 含水率/% | ||||
---|---|---|---|---|---|
5 | 10 | 15 | 20 | 25 | |
0.18 | 0.06±0.03 | 0.25±0.07 | 0.33±0.03 | 0.72±0.05 | 1.11±0.24 |
3.18 | 0.29±0.04 | 1.17±0.20 | 2.27±0.39 | 5.43±1.09 | 8.90±1.49 |
6.18 | 0.38±0.04 | 1.30±0.26 | 3.03±0.41 | 8.56±1.54 | 12.54±2.09 |
9.18 | 0.52±0.06 | 1.64±0.22 | 3.99±0.55 | 10.05±1.59 | 14.99±1.51 |
12.18 | 0.64±0.07 | 1.83±0.35 | 4.68±0.95 | 12.43±1.73 | 17.05±2.56 |
Tab. 6
Fitting equation between ECa of soil and moisture content under different salt content conditions"
含盐量/% | 土壤电导率与含水率拟合方程 | 拟合优度(R2) | 残差平方和(RSS) | 显著性水平(P) |
---|---|---|---|---|
0.18 | y=0.0019x1.9837 | 0.9804 | 0.0104 | 4.7251×10-4 |
3.18 | y=0.0038x2.4149 | 0.9945 | 0.2070 | 9.1196×10-5 |
6.18 | y=0.0060x2.3830 | 0.9785 | 1.7457 | 7.3282×10-4 |
9.18 | y=0.0088x2.3191 | 0.9867 | 1.4969 | 3.4237×10-4 |
12.18 | y=0.0144x2.2104 | 0.9710 | 4.4105 | 0.0011 |
Tab. 7
Fitting equation between ECa of soil and salt content under different moisture content conditions"
含水率/% | 土壤电导率与含盐量拟合方程 | 拟合优度(R2) | 残差平方和(RSS) | 显著性水平(P) |
---|---|---|---|---|
5 | y=-0.0014x2+0.0630x+0.0644 | 0.9757 | 0.0024 | 0.0122 |
10 | y=-0.0099x2+0.2436x+0.2899 | 0.9100 | 0.0674 | 0.0450 |
15 | y=-0.0183x2+0.5730x+0.3449 | 0.9768 | 0.1317 | 0.0116 |
20 | y=-0.0500x2+1.5527x+0.6521 | 0.9828 | 0.7059 | 0.0086 |
25 | y=-0.1004x2+2.5066x+1.0689 | 0.9812 | 1.4804 | 0.0094 |
Tab. 8
Grey correlation degree between ECa and moisture content under different salt content conditions"
土壤含水率/% | 土壤含盐量/% | ||||
---|---|---|---|---|---|
0.18 | 3.18 | 6.18 | 9.18 | 12.18 | |
5 | 0.825 | 0.873 | 1.000 | 1.000 | 1.000 |
10 | 0.919 | 0.767 | 0.807 | 0.801 | 0.771 |
15 | 0.666 | 0.738 | 0.809 | 0.848 | 0.833 |
20 | 1.000 | 1.000 | 0.904 | 0.957 | 0.831 |
25 | 0.476 | 0.475 | 0.559 | 0.560 | 0.582 |
灰色关联度 | 0.777 | 0.771 | 0.816 | 0.833 | 0.803 |
Tab. 9
Grey correlation degree between ECa and salt content under different moisture content conditions"
土壤含盐量/% | 土壤含水率/% | ||||
---|---|---|---|---|---|
5 | 10 | 15 | 20 | 25 | |
0.18 | 0.536 | 0.707 | 0.893 | 1.000 | 1.000 |
3.18 | 0.368 | 0.438 | 0.507 | 0.596 | 0.549 |
6.18 | 1.000 | 1.000 | 1.000 | 0.725 | 0.786 |
9.18 | 0.579 | 0.728 | 0.878 | 0.767 | 0.875 |
12.18 | 0.346 | 0.401 | 0.451 | 0.485 | 0.452 |
灰色关联度 | 0.565 | 0.655 | 0.745 | 0.715 | 0.733 |
[1] | He F, Xie T, Xie G, et al. Vertical migrating and cluster analysis of soil mesofauna at Dongying halophytes garden in Yellow River Delta[J]. Journal of Northeast Agricultural University, 2014, 21(1):25-30. |
[2] |
Flowers T J, Colmer T D. Plant salt tolerance: Adaptations in halophytes[J]. Annals of Botany, 2015, 115(3):327-331.
doi: 10.1093/aob/mcu267 |
[3] |
Su Y, Luo W, Lin W, et al. Model of cation transportation mediated by high-affinity, potassium transporters in higher plants[J]. Biological Procedures Online, 2015, 17: 1. https://doi.org/10.1186/s12575-014-0013-3.
doi: 10.1186/s12575-014-0013-3 |
[4] | Hameed A, Gulzar S, Aziz I, et al. Effects of salinity and ascorbic acid on growth, water status and antioxidant system in a perennial halophyte[J]. AoB Plants, 2015, 7:1-11. |
[5] |
Griggs D, Stafford-Smith M, Gaffney O, et al. Policy: Sustainable development goals for people and planet[J]. Nature, 2013, 495(74):305-307.
doi: 10.1038/495305a |
[6] |
Güler M, Arslan H, Cemek B, et al. Long-term changes in spatial variation of soil electrical conductivity and exchangeable sodium percentage in irrigated mesic ustifluvents[J]. Agricultural Water Management, 2014, 135(4):1-8.
doi: 10.1016/j.agwat.2013.12.011 |
[7] |
Rath K M, Rousk J. Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: A review[J]. Soil Biology & Biochemistry, 2015, 81:108-123.
doi: 10.1016/j.soilbio.2014.11.001 |
[8] | 张顺, 贾永刚, 连胜利, 等. 电导率法在土壤盐渍化中的改进和应用进展[J]. 土壤通报, 2014, 45(3):754-759. |
[ Zhang Shun, Jia Yonggang, Lian Shengli, et al. Application and improvement of electrical conductivity measurements in soil salinity[J]. Chinese Journal of Soil Science, 2014, 45(3):754-759. ] | |
[9] |
Kurtuluş C, Yeken T, Durda D. Estimating the soil water content using electrical conductivity, oven method and speedy moisture Tester[J]. Eurasian Soil Science, 2019, 52(12):1577-1582.
doi: 10.1134/S1064229319120081 |
[10] | 罗战友, 陶燕丽, 周建, 等. 杭州淤泥质土的电渗电导率特性研究[J]. 岩石力学与工程学报, 2019, 38(增刊1):3222-3228. |
[ Luo Zhanyou, Tao Yanli, Zhou Jian, et al. Study on electro-osmotic conductivity of Hangzhou silty soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(Suppl.):3222-3228. ] | |
[11] | 陈仁朋, 陈伟, 王进学, 等. 饱和砂性土孔隙水电导率特性及测试技术[J]. 岩土工程学报, 2010, 32(5):780-783. |
[ Chen Renpeng, Chen Wei, Wang Jinxue, et al. Electrical conductivity of pore water in saturated sand and its measurement technology[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5):780-783. ] | |
[12] |
Brevik E C, Fenton T E, Lazari A. Soil electrical conductivity as a function of soil water content and implications for soil mapping[J]. Precision Agriculture, 2006, 7(6):393-404.
doi: 10.1007/s11119-006-9021-x |
[13] | 李瑛, 龚晓南, 郭彪, 等. 电渗软黏土电导率特性及其导电机制研究[J]. 岩石力学与工程学报, 2010, 29(增刊2):4027-4032. |
[ Li Ying, Gong Xiaonan, Guo Biao, et al. Research on conductivity characteristics of soft clay during electro-osmosis and its conductive mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(Suppl. 2):4027-4032. ] | |
[14] | 李相, 丁建丽, 侯艳军, 等. 干旱半干旱区土壤含盐量和电导率高光谱估算[J]. 冰川冻土, 2015, 37(4):1050-1058. |
[ Li Xiang, Ding Jianli, Hou Yanjun, et al. Estimating the soil salt content and electrical conductivity in semi-arid and arid areas by using hyperspectral data[J]. Journal of Glaciology and Geocryology, 2015, 37(4):1050-1058. ] | |
[15] |
Serrano J M, Shahidian S, Marques da Silva J. Spatial variability and temporal stability of apparent soil electrical conductivity in a Mediterranean pasture[J]. Precision Agriculture, 2017, 18(2):245-263.
doi: 10.1007/s11119-016-9460-y |
[16] | Usha L, Pandya H M. Role of soil electrical conductivity (EC) and pH in the suitability prognosis of agricultural practices in Noyyal River Basin[J]. International Journal of Research in Science, 2015, 2(1):6-12. |
[17] | 郑亚楠, 支金虎, 刘海江, 等. 不同改良措施对沙化土壤水分、pH值和电导率的影响[J]. 塔里木大学学报, 2020, 32(3):61-71. |
[ Zheng Yanan, Zhi Jinhu, Liu Haijiang, et al. Effects of different improvement measures on water content, pH value and conductivity of sandy soil[J]. Journal of Tarim University, 2020, 32(3), 61-71. ] | |
[18] | 郭青林, 周杰, 裴强强, 等. 电导率在土遗址易溶盐快速测定中的研究与应用[J]. 地下空间与工程学报, 2019, 15(3):891-901. |
[ Guo Qinglin, Zhou Jie, Pei Qiangqiang, et al. Study and application of electrical conductivity to rapid determination of salt content in Earthen sites[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(3):891-901. ] | |
[19] | 潘保田, 李吉均. 青藏高原: 全球气候变化的驱动机与放大器[J]. 兰州大学学报, 1996, 32(1):108-115. |
[ Pan Baotian, Li Jijun. Qinghai-Tibetan Plateau: A driver and river and amplifier of the global climatic change[J]. Journal of Lanzhou University, 1996, 32(1):108-115. ] | |
[20] | 孙恺. 西宁盆地地下热水循环机制与资源评价[D]. 西安: 西北大学, 2015. |
[ Sun Kai. The Underground Hot Water Circulation Mechanism and the Resource Evaluation in Xining Basin[D]. Xi’an: Northwest University.] | |
[21] | 朱海丽, 胡夏嵩, 毛小青, 等. 青藏高原黄土区护坡灌木植物根系力学特性研究[J]. 岩石力学与工程学报, 2008, 27(增刊2):3445-3452. |
[ Zhu Haili, Hu Xiasong, Mao Xiaoqing, et al. Study on mechanical characteristics of shrub roots for slope protection in loess area of Tibetan Plateau[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(Suppl. 2):3445-3452. ] | |
[22] | 严焕德. 西宁盆地末次冰期晚冰阶古气候变化的黄土记录[D]. 重庆: 西南大学, 2007. |
[ Yan Huande. Paleoclimatic Change During Late Stadial of the Last Glaciation Based on Loess from Xining Basin[D]. Chunqing: Southwest University, 2007. ] | |
[23] | 王智明. 西宁黄土状盐渍土作为回填材料的研究[J]. 岩土工程技术, 2009, 23(6):316-320. |
[ Wang Zhiming. Study on the loess-like saline soil as backfill material in Xining[J]. 2009, 23(6):316-320. ] | |
[24] | 孙毅. 西宁市黄土滑坡发育特征及稳定性分析[D]. 西安: 长安大学, 2013. |
[ Sun Yi. The Development Characteristics and Stability Analysis of Xining Loess Landslide[D]. Xi’an: Chang’an University, 2013. ] | |
[25] | 罗友弟. 青海地区盐渍土分布规律及其盐胀溶陷机制探讨[J]. 水文地质工程地质, 2010, 37(4):116-120. |
[ Luo Youdi. Investigation of the distribution of saline soil in Qinghai and its unique engineering properties[J]. Hydrogeology & Engineering Geology, 2010, 37(4):116-120. ] | |
[26] | 刘亚斌. 青藏高原东北部黄土区植物降盐效应评价及其增强边坡稳定性研究[D]. 北京: 中国科学院大学, 2018. |
[ Liu Yabin. Research on Evaluation of Salt Tolerance and Salt Reduction Effect of Plants and their Enhancement of Slope Stability in Xining Basin[D]. Beijing: University of Chinese Academy of Sciences, 2018. ] | |
[27] | 工程地质手册编委会. 工程地质手册[M]. 北京: 中国建筑工业出版社, 2007. |
[Editorial Committee of Geological Engineering Handbook. Geological Engineering Handbook[M]. Beijing: China Construction Industry Press, 2007. ] | |
[28] | 王智明. 西宁黄土状盐渍土地区工程建设中值得重视的问题[J]. 地质灾害与环境保护, 2010, 21(3):79-82. |
[ Wang Zhiming. The problems of great importance in the progect construction of the region of loess-like saline soil in Xining[J]. Journal of Geological Hazards and Environment Preservation, 2010, 21(3):79-82. ] | |
[29] |
Friedman S P. Soil properties influencing apparent electrical conductivity: A review[J]. Computer and Electronics in Agriculture, 2005, 46(1-3):45-70.
doi: 10.1016/j.compag.2004.11.001 |
[30] |
Corwin D L, Lesh S M. Apparent soil electrical conductivity measurements in agriculture[J]. Computers and Electronics in Agriculture 2005, 46(1-3):11-43.
doi: 10.1016/j.compag.2004.10.005 |
[31] | 赵领娣, 冯剑, 孙凌霄, 等. 中国西北干旱区城市水、大气污染排放与FDI关系研究[J]. 干旱区研究, 2020, 37(1):67-73. |
[ Zhao Lingdi, Feng Jian, Sun Lingxiao, et al. Relationship between water & air pollutant emission and FDI in arid cities in Northwest China[J]. Arid Zone Research, 2020, 37(1):67-73. ] | |
[32] | 何珍珍, 王宏卫, 杨胜天, 等. 塔里木盆地中北部绿洲生态安全评价[J]. 干旱区研究, 2018, 35(4):963-970. |
[ He Zhenzhen, Wang Hongwei, Yang Shengtian, et al. Evaluation on ecological security and analysis of influence factors of oasis in Northwest arid region[J]. Arid Zone Research, 2018, 35(4):963-970. ] | |
[33] | 刘旭, 迟春明. 盐渍土溶液电导率与渗透势换算关系及其在盐度分级中的应用[J]. 湖北农业科学, 2016, 55(10):2481-2484. |
[ Liu Xu, Chi Chunming. Relationship between osmotic potential and electrical conductivity of salt-affected soil solutions and its application on salinity degree of salt-affected soil[J]. Hubei Agricultural Sciences, 2016, 55(10):2481-2484. ] | |
[34] | 陈泽华. 弹性颗粒粒径与渗透率的匹配关系研究[D]. 青岛: 中国石油大学(华东), 2016. |
[ Chen Zehua. Research on the Matching Relation Between the Diameter of Elastical Particle and Permeability of the Formation[D]. Qingdao: China University of Petroleum(East China), 2016. ] | |
[35] | Delaney A J, Peapples P R, Arcone S A. Electrical resistivity of frozen and petroleum-contaminated fine-grained soil[J]. 2001, 32(2-3):107-119. |
[36] | 徐志闻, 刘亚斌, 胡夏嵩, 等. 基于水分和原位电导率的西宁盆地盐渍土含盐量估算模型[J]. 农业工程学报, 2019, 35(5):148-154. |
[ Xu Zhiwen, Liu Yabin, Hu Xiasong, et al. Salt content estimation model of saline soil in Xining basin based on water content and in-situ electrical conductivity[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(5):148-154. ] | |
[37] |
Oh M H, Lee J H, Yoon G L, et al. Pilot-scale field model tests for detecting landfill leachate intrusion into the subsurface using a grid-net electrical conductivity measurement system[J]. Environmental Geology, 2003, 45(2):181-189.
doi: 10.1007/s00254-003-0880-4 |
|