干旱区研究 ›› 2022, Vol. 39 ›› Issue (3): 829-840.doi: 10.13866/j.azr.2022.03.16
丁启振1,2,3(),雷米1,2,3(),周金龙1,2,3(),张杰4,徐东升5
收稿日期:
2021-09-30
修回日期:
2021-11-17
出版日期:
2022-05-15
发布日期:
2022-05-30
通讯作者:
雷米,周金龙
作者简介:
丁启振(1998-),男,硕士研究生,主要从事干旱区地下水水质演化的学习与研究. E-mail: 基金资助:
DING Qizhen1,2,3(),LEI Mi1,2,3(),ZHOU Jinlong1,2,3(),ZHANG Jie4,XU Dongsheng5
Received:
2021-09-30
Revised:
2021-11-17
Online:
2022-05-15
Published:
2022-05-30
Contact:
Mi LEI,Jinlong ZHOU
摘要:
为了解博尔塔拉河上游河谷地区地下水和地表水水化学特征及水质状况,以36组水样数据为基础,运用Piper图、相关性分析、Gibbs图和离子比值等方法研究水化学特征及其影响因素,采用熵权-贝叶斯水质评价模型、Wilcox图和USSL图等方法进行水质评价。水化学分析结果显示:(1) 研究区机井水、泉水和河水均为弱碱性淡水,总硬度(TH)、溶解性总固体(TDS)、F-和
丁启振,雷米,周金龙,张杰,徐东升. 博尔塔拉河上游河谷地区水化学特征及水质评价[J]. 干旱区研究, 2022, 39(3): 829-840.
DING Qizhen,LEI Mi,ZHOU Jinlong,ZHANG Jie,XU Dongsheng. An assessment of groundwater, surface water, and hydrochemical characteristics in the upper valley of the Bortala River[J]. Arid Zone Research, 2022, 39(3): 829-840.
表1
水化学特征参数统计"
地下水类型 | 统计值 | pH | TH | TDS | 阳离子 | 阴离子 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
K++Na+ | Ca2+ | Mg2+ | Cl- | | | F- | | ||||||
机井水(n=23) | 最小值 | 7.47 | 78.33 | 132.38 | 9.69 | 24.53 | 1.95 | 5.67 | 13.74 | 95.23 | 0.25 | 1.95 | |
最大值 | 8.08 | 301.26 | 708.48 | 127.66 | 88.48 | 37.32 | 42.54 | 248.01 | 332.08 | 1.92 | 44.68 | ||
均值 | 7.85 | 152.51 | 265.12 | 30.28 | 48.85 | 7.41 | 12.79 | 51.94 | 168.43 | 0.71 | 16.54 | ||
标准差 | 0.18 | 55.57 | 121.51 | 25.18 | 15.39 | 7.18 | 8.95 | 47.85 | 55.21 | 0.51 | 13.71 | ||
变异系数 | 0.02 | 0.36 | 0.46 | 0.83 | 0.32 | 0.97 | 0.70 | 0.92 | 0.33 | 0.72 | 0.83 | ||
泉水(n=6) | 最小值 | 7.31 | 97.41 | 152.06 | 12.82 | 35.79 | 1.95 | 7.09 | 20.34 | 115.98 | 0.26 | 3.76 | |
最大值 | 7.90 | 210.88 | 318.10 | 34.26 | 70.38 | 10.98 | 14.18 | 84.05 | 195.34 | 1.06 | 26.61 | ||
均值 | 7.69 | 148.62 | 232.29 | 20.72 | 50.40 | 5.53 | 9.45 | 45.68 | 155.66 | 0.48 | 12.12 | ||
标准差 | 0.27 | 45.61 | 72.96 | 8.93 | 13.21 | 3.53 | 3.66 | 28.35 | 32.46 | 0.31 | 9.68 | ||
变异系数 | 0.03 | 0.31 | 0.31 | 0.43 | 0.26 | 0.64 | 0.39 | 0.62 | 0.21 | 0.64 | 0.80 | ||
河水(n=7) | 最小值 | 7.83 | 63.26 | 96.57 | 10.47 | 23.73 | 0.98 | 2.84 | 6.17 | 81.80 | 0.19 | 2.58 | |
最大值 | 8.68 | 147.62 | 254.71 | 29.01 | 47.46 | 7.07 | 17.02 | 52.82 | 156.27 | 0.63 | 11.79 | ||
均值 | 8.12 | 97.98 | 156.52 | 16.47 | 32.92 | 3.83 | 8.20 | 26.72 | 108.48 | 0.40 | 5.49 | ||
标准差 | 0.30 | 30.44 | 54.56 | 6.42 | 9.26 | 2.12 | 4.63 | 14.35 | 30.73 | 0.18 | 3.65 | ||
变异系数 | 0.04 | 0.31 | 0.35 | 0.39 | 0.28 | 0.55 | 0.56 | 0.54 | 0.28 | 0.44 | 0.67 |
表2
水体中主要水化学组分相关性"
K+ | Na+ | Ca2+ | Mg2+ | Cl- | | | | F- | TDS | pH | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
机 井 水 | K+ | 1 | 0.658 | 0.965** | 0.792* | 0.832* | 0.821* | 0.964** | 0.666 | 0.501 | 0.905** | -0.285 | 河 水 |
Na+ | 0.830** | 1 | 0.824* | 0.668 | 0.891** | 0.858* | 0.805* | 0.685 | 0.716 | 0.910** | 0.102 | ||
Ca2+ | 0.355 | 0.156 | 1 | 0.784* | 0.938** | 0.872* | 0.998** | 0.736 | 0.620 | 0.978** | -0.201 | ||
Mg2+ | 0.776** | 0.826** | 0.324 | 1 | 0.738 | 0.941** | 0.760* | 0.548 | 0.277 | 0.833* | 0.016 | ||
Cl- | 0.755** | 0.922** | 0.268 | 0.714** | 1 | 0.838* | 0.938** | 0.787* | 0.578 | 0.958** | -0.148 | ||
| 0.798** | 0.940** | 0.300 | 0.908** | 0.900** | 1 | 0.847* | 0.674 | 0.475 | 0.937** | -0.007 | ||
| 0.735** | 0.619** | 0.755** | 0.798** | 0.548** | 0.679** | 1 | 0.727 | 0.599 | 0.966** | -0.239 | ||
| 0.308 | 0.103 | 0.827** | 0.147 | 0.186 | 0.137 | 0.569** | 1 | 0.301 | 0.757* | -0.478 | ||
F- | 0.112 | 0.237 | 0.217 | -0.164 | 0.314 | 0.090 | 0.077 | 0.297 | 1 | 0.635 | 0.416 | ||
TDS | 0.847** | 0.879** | 0.588** | 0.886** | 0.855** | 0.926** | 0.881** | 0.450* | 0.193 | 1 | -0.092 | ||
pH | 0.244 | 0.308 | 0.027 | 0.230 | 0.275 | 0.315 | 0.095 | 0.069 | -0.023 | 0.258 | 1 | ||
泉 水 | K+ | 1 | |||||||||||
Na+ | 0.847* | 1 | |||||||||||
Ca2+ | 0.621 | 0.472 | 1 | ||||||||||
Mg2+ | 0.837* | 0.563 | 0.814* | 1 | |||||||||
Cl- | 0.882* | 0.950** | 0.299 | 0.553 | 1 | ||||||||
| 0.692 | 0.462 | 0.921** | 0.953** | 0.372 | 1 | |||||||
| 0.713 | 0.680 | 0.956** | 0.764 | 0.495 | 0.839* | 1 | ||||||
| 0.939** | 0.894* | 0.357 | 0.605 | 0.967** | 0.409 | 0.524 | 1 | |||||
F- | 0.413 | 0.790 | 0.411 | 0.219 | 0.591 | 0.260 | 0.637 | 0.461 | 1 | ||||
TDS | 0.867* | 0.753 | 0.912* | 0.916* | 0.651 | 0.918** | 0.943** | 0.679 | 0.531 | 1 | |||
pH | 0.225 | 0.369 | -0.508 | -0.040 | 0.562 | -0.255 | -0.374 | 0.438 | 0.074 | -0.129 | 1 |
表3
饮用水水质评价结果"
类型 | 乡镇 | 编号 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | 类别 | 乡镇 | 编号 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | 类别 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
机井水 | 扎勒木 特乡 | G1 | 0.28 | 0.46 | 0.14 | 0.07 | 0.05 | Ⅱ | 查干屯 格乡 | G5 | 0.13 | 0.15 | 0.26 | 0.41 | 0.05 | Ⅳ |
G2 | 0.28 | 0.29 | 0.26 | 0.10 | 0.07 | Ⅱ | G8 | 0.20 | 0.16 | 0.16 | 0.24 | 0.24 | Ⅳ | |||
G4 | 0.56 | 0.22 | 0.13 | 0.06 | 0.04 | Ⅰ | G9 | 0.13 | 0.09 | 0.08 | 0.27 | 0.44 | Ⅴ | |||
昆得仑 牧场 | G3 | 0.34 | 0.15 | 0.06 | 0.27 | 0.18 | Ⅰ | 塔秀乡 | G12 | 0.50 | 0.27 | 0.13 | 0.05 | 0.04 | Ⅰ | |
G6 | 0.10 | 0.10 | 0.21 | 0.21 | 0.39 | Ⅴ | G13 | 0.22 | 0.19 | 0.24 | 0.23 | 0.12 | Ⅲ | |||
G7 | 0.14 | 0.14 | 0.16 | 0.27 | 0.30 | Ⅴ | 呼和托哈 种畜场 | G16 | 0.22 | 0.19 | 0.40 | 0.11 | 0.07 | Ⅲ | ||
哈日布 呼镇 | G10 | 0.20 | 0.17 | 0.55 | 0.05 | 0.03 | Ⅲ | G17 | 0.18 | 0.15 | 0.13 | 0.47 | 0.07 | Ⅳ | ||
G11 | 0.26 | 0.16 | 0.45 | 0.08 | 0.05 | Ⅲ | G18 | 0.22 | 0.18 | 0.18 | 0.18 | 0.25 | Ⅴ | |||
安格里 格镇 | G14 | 0.23 | 0.20 | 0.19 | 0.17 | 0.20 | Ⅰ | G19 | 0.31 | 0.38 | 0.18 | 0.08 | 0.06 | Ⅱ | ||
G15 | 0.19 | 0.16 | 0.15 | 0.42 | 0.09 | Ⅳ | G20 | 0.24 | 0.22 | 0.37 | 0.10 | 0.07 | Ⅲ | |||
G21 | 0.29 | 0.46 | 0.14 | 0.07 | 0.05 | Ⅱ | G23 | 0.60 | 0.18 | 0.12 | 0.06 | 0.04 | Ⅰ | |||
G22 | 0.21 | 0.13 | 0.56 | 0.06 | 0.04 | Ⅲ | ||||||||||
泉水 | 扎勒木特乡 | Q1 | 0.16 | 0.51 | 0.23 | 0.06 | 0.04 | Ⅱ | 塔秀乡 | Q4 | 0.19 | 0.16 | 0.15 | 0.33 | 0.17 | Ⅳ |
查干屯格乡 | Q2 | 0.23 | 0.20 | 0.22 | 0.25 | 0.10 | Ⅳ | 呼和托哈 种畜场 | Q5 | 0.31 | 0.38 | 0.18 | 0.08 | 0.06 | Ⅱ | |
Q3 | 0.31 | 0.38 | 0.19 | 0.07 | 0.05 | Ⅱ | Q6 | 0.25 | 0.24 | 0.34 | 0.10 | 0.07 | Ⅲ |
[1] | 张飞, 陈道胜. 世界水日、 中国水周主题下的水资源发展回顾与展望[J]. 水利水电科技进展, 2020, 40(4): 77-86, 94. |
[ Zhang Fei, Chen Daosheng. Review and outlook on water resources development based on China water week and world water day[J]. Advances in Science and Technology of Water Resources, 2020, 40(4): 77-86, 94. ] | |
[2] | 夏军, 朱一中. 水资源安全的度量: 水资源承载力的研究与挑战[J]. 自然资源学报, 2002, 17(3): 262-269. |
[ Xia Jun, Zhu Yizhong. The measurement of water resources security: A study and challenge on water resources carrying capacity[J]. Journal of Natural Resources, 2002, 17(3): 262-269. ] | |
[3] | 杨森, 李义连, 姜凤成, 等. 高店子幅水化学特征及水质评价[J]. 地质科技情报, 2019, 38(2): 226-234. |
[ Yang Sen, Li Yilian, Jiang Fengcheng, et al. Hydrochemical characteristics and water quality assessment of surface water and groundwater in Gaodianzi map-area[J]. Geological Science and Technology Information, 2019, 38(2): 226-234. ] | |
[4] |
Ma L, Abuduwaili J, Li Y, et al. Hydrochemical characteristics and water quality assessment for the upper reaches of Syr Darya River in Aral Sea Basin, Central Asia[J]. Water, 2019, 11(9): 1893.
doi: 10.3390/w11091893 |
[5] |
Malik N, Malik A, Bishnoi S. Assessment of groundwater hydro-geochemistry, quality, and human health risk in arid area of India using chemometric approach[J]. Arabian Journal of Geosciences, 2021, 14(15): 1-25.
doi: 10.1007/s12517-020-06304-8 |
[6] | 张景涛, 史浙明, 王广才, 等. 柴达木盆地大柴旦地区地下水水化学特征及演化规律[J]. 地学前缘, 2021, 28(4): 194-205. |
[ Zhang Jingtao, Shi Zheming, Wang Guangcai, et al. Hydrochemical characteristics and evolution of groundwater in the Dachaidan area, Qaidam Basin[J]. Earth Science Frontiers, 2021, 28(4): 194-205. ] | |
[7] | 周嘉欣, 丁永建, 曾国雄, 等. 疏勒河上游地表水水化学主离子特征及其控制因素[J]. 环境科学, 2014, 35(9): 3315-3324. |
[ Zhou Jiaxin, Ding Yongjian, Zeng Guoxiong, et al. Major ion chemistry of surface water in the upper reach of Shule River Basin and the possible controls[J]. Environmental Science, 2014, 35(9): 3315-3324. ] | |
[8] |
朱世丹, 张飞, 张海威, 等. 新疆艾比湖主要入湖河流同位素及水化学特征的季节变化[J]. 湖泊科学, 2018, 30(6): 1707-1721.
doi: 10.18307/2018.0622 |
[ Zhu Shidan, Zhang Fei, Zhang Haiwei, et al. Seasonal variation of the isotope and hydrochemical characteristics of the main lake rivers in Lake Ebinur, Xinjiang[J]. Journal of Lake Sciences, 2018, 30(6): 1707-1721. ]
doi: 10.18307/2018.0622 |
|
[9] | 张杰, 周金龙, 曾妍妍, 等. 新疆叶尔羌河流域地表水水化学特征及控制因素[J]. 环境科学, 2021, 42(4): 1706-1713. |
[ Zhang Jie, Zhou Jinlong, Zeng Yanyan, et al. Hydrochemical characteristic and their controlling factors in the Yarkant River Basin of Xinjiang[J]. Environmental Science, 2021, 42(4): 1706-1713. ] | |
[10] | 张月, 张飞, 王娟, 等. 近40年艾比湖湿地自然保护区生态干扰度时空动态及景观格局变化[J]. 生态学报, 2017, 37(21): 7082-7097. |
[ Zhang Yue, Zhang Fei, Wang Juan, et al. Analysis of the temporal and spatial dynamics of landscape patterns and hemeroby index of the Ebinur Lake Wetland Nature Reserve, Xinjiang, over the last 40 years[J]. Acta Ecologica Sinica, 2017, 37(21): 7082-7097. ] | |
[11] | 雷米, 周金龙, 张杰, 等. 新疆博尔塔拉河流域平原区地表水与地下水水化学特征及转化关系[J]. 环境科学, 2022, 43(4): 1873-1884. |
[ Lei Mi, Zhou Jinlong, Zhang Jie, et al. Hydrochemical characteristics and transformation relationship of surface water and groundwater in the plain area of Bortala River Basin, Xinjiang[J]. Environmental Science, 2022, 43(4): 1873-1884. ] | |
[12] | 郝帅, 李发东, 李艳红, 等. 基于氢氧稳定同位素的艾比湖流域地表水与地下水转化关系[J]. 水土保持学报, 2021, 35(4): 172-177, 185. |
[ Hao Shuai, Li Fadong, Li Yanhong, et al. Transformation between surface water and groundwater in Ebinur Lake Basin based on hydrogen and oxygen stable isotopes[J]. Journal of Soil and Water Conservation, 2021, 35(4): 172-177, 185. ] | |
[13] | 玛尔胡拜·牙生, 马龙, 吉力力·阿不都外力, 等. 新疆天山西段夏季河流水化学特征及其影响因素研究[J]. 干旱区研究, 2021, 38(3): 600-609. |
[ Yaerhubai Yasheng, Ma Long, Jilili Abuduwaili, et al. Hydrochemical characteristics and their influence on rivers in the western part of the Tianshan Mountains, Xinjiang, China[J]. Arid Zone Research, 2021, 38(3): 600-609. ] | |
[14] | 袁振辉, 李秋华, 何应, 等. 基于贝叶斯方法的贵州高原百花水库水体营养盐变化及评价(2014-2018年)[J]. 湖泊科学, 2019, 31(6): 1623-1636. |
[ Yuan Zhenhui, Li Qiuhua, He Ying, et al. Variation and evaluation of nutrients in Baihua Reservoir in Guizhou Plateau based on Bayesian method, 2014-2018[J]. Lake Sciences, 2019, 31(6): 1623-1636. ] | |
[15] | 刘鑫, 向伟, 司炳成. 渭河和泾河流域浅层地下水水化学特征和控制因素[J]. 环境科学, 2021, 42(6): 2817-2825. |
[ Liu Xin, Xiang Wei, Si Bingcheng. Hydrochemistry and its controlling factors and water quality assessment of shallow groundwater in the Weihe and Jinghe River catchments[J]. Environmental Science, 2021, 42(6): 2817-2825. ] | |
[16] | 秦国强. 温泉县城西地下水水源地可行性评价[J]. 地下水, 2020, 42(6): 35-36, 49. |
[ Qin Guoqiang. Feasibility evaluation of west groundwater source in Wenquan County[J]. Ground Water, 2020, 42(6): 35-36, 49. ] | |
[17] | 王彩华, 陶澄宇, 邹英, 等. 新疆维吾尔自治区环境地质图集[M]. 乌鲁木齐: 新疆维吾尔自治区地质环境监测院, 2005. |
[ Wang Caihua, Tao Chengyu, Zou Ying, et al. Environmental geology atlas of Xinjiang Uygur Autonomous Region[M]. Urumqi: Geological Environment Monitoring Institute of Xinjiang Uygur Autonomous Region, 2005. ] | |
[18] | 巴雅尔, 郭家盛, 卢少勇, 等. 博斯腾湖大湖湖区近20年生态健康状况评价[J]. 中国环境科学, 2013, 33(3): 503-507. |
[ Ba Yaer, Guo Jiasheng, Lu Shaoyong, et al. Assessing ecological health of open water region from Bostenhu Lake during last 20 years[J]. China Environmental Science, 2013, 33(3): 503-507. ] | |
[19] | 杨咪, 屈文岗, 钱会. 基于熵权的贝叶斯模型及其在水质评价中的应用[J]. 灌溉排水学报, 2018, 37(1): 85-90. |
[ Yang Mi, Qu Wengang, Qian Hui, et al. Bayesian model based on entropy weight and its application in water quality assessment[J]. Journal of Irrigation and Drainage, 2018, 37(1): 85-90. ] | |
[20] | 宋新山, 邓伟, 章光新, 等. 钠吸附比及其在水体碱化特征评价中的应用[J]. 水利学报, 2000(7): 70-76. |
[ Song Xinshan, Deng Wei, Zhang Guangxin, et al. Sodium adsorption ratio and its application to appraisement of alkali characteristics of water[J]. Journal of Hydraulic Engineering, 2000(7): 70-76. ] | |
[21] | 张志强, 张强, 刘超飞, 等. 四川省简阳市地下水水化学特征及灌溉适宜性[J]. 水土保持通报, 2018, 38(4): 67-74. |
[ Zhang Zhiqiang, Zhang Qiang, Liu Chaofei, et al. Hydrochemical characteristics of groundwater and it suitability for irrigation in Jianyang City of Sichuan Province[J]. Bulletin of Soil and Water Conservation, 2018, 38(4): 67-74. ] | |
[22] | 毛萌, 朱雪芹. 宣化盆地地下水化学特性及灌溉适用性评价[J]. 干旱区资源与环境, 2020, 34(7): 142-149. |
[ Mao Meng, Zhu Xueqin. Chemical characteristics of groundwater in Xuanhua Basin and assessment of irrigation applicability[J]. Journal of Arid Land Resources and Environment, 2020, 34(7): 142-149. ] | |
[23] |
Sarin M M, Krishnasswami S. Major ion chemistry of the Ganga-Brahamputra river systems, India[J]. Nature, 1984, 312: 538-541.
doi: 10.1038/312538a0 |
[24] | Fitts C R. Groundwater Science[M]. Amsterdam: Academic Press, 2002. |
[25] | 余石勇, 刘孟, 赵元艺, 等. 西藏麻米错盐湖大型锂硼矿盆地水化学特征[J/OL]. 地质学报: 1-11[2021-11-10]. |
Yu Shiyong, Liu Meng, Zhao Yuanyi, et al. Hydrochemical characteristics of large-scale lithium-boron mine basin in the Mami Co Saline Lake, Tibet[J/OL]. Acta Geologica Sinica: 1-11[2021-11-10]. ] | |
[26] | 唐玺雯, 吴锦奎, 薛丽洋, 等. 锡林河流域地表水水化学主离子特征及控制因素[J]. 环境科学, 2014, 35(1): 131-142. |
[ Tang Xiwen, Wu Jinkui, Xue Liyang, et al. Major ion chemistry of surface water in the Xilin River Basin and the possible controls[J]. Environmental Science, 2014, 35(1): 131-142. ] | |
[27] | 冯国平, 高宗军, 蔡五田, 等. 豫北山前修武地区地下水水化学特征及水质评价[J]. 长江科学院院报, 2021, 38(1): 27-34. |
[ Feng Guoping, Gao Zongjun, Cai Wutian, et al. Hydrochemical characteristics and water quality assessment of groundwater in Xiuwu area of North Henan Province[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(1): 27-34. ] | |
[28] | 任晓辉, 吴玺, 高宗军, 等. 酒泉东盆地地下水化学特征及成因分析[J]. 干旱区资源与环境, 2019, 33(10): 109-116. |
[ Ren Xiaohui, Wu Xi, Gao Zongjun, et al. Hydrochemical characteristics and formation mechanisms of groundwater in Jiuquan East basin[J]. Journal of Arid Land Resources and Environment, 2019, 33(10): 109-116. ] | |
[29] | 刘敏, 赵良元, 李青云, 等. 长江源区主要河流水化学特征、主要离子来源[J]. 中国环境科学, 2021, 41(3): 1243-1254. |
[ Liu Min, Zhao Liangyuan, Li Qingyun, et al. Hydrochemical characteristics, main ion sources of main rivers in the source region of Yangtze River[J]. China Environmental Science, 2021, 41(3): 1243-1254. ] | |
[30] | 李军, 邹胜章, 赵一, 等. 会仙岩溶湿地地下水主要离子特征及成因分析[J]. 环境科学, 2021, 42(4): 1750-1760. |
[ Li Jun, Zou Shengzhang, Zhao Yi, et al. Major ionic characteristics and factors of karst groundwater at Huixian Karst Wetland, China[J]. Environmental Science, 2021, 42(4): 1750-1760. ] | |
[31] | 严宇鹏, 牛凤霞, 刘佳, 等. 雅鲁藏布江上游夏季水化学特征及来源解析[J]. 中国环境科学, 2022, 42(2): 815-825. |
[ Yan Yupeng, Niu Fengxia, Liu Jia, et al. Hydrochemical characteristics and sources of the upper Yarlung Zangbo River in summer[J]. China Environmental Science, 2022, 42(2): 815-825. ] | |
[32] |
张艳, 吴勇, 杨军, 等. 阆中市思依镇水化学特征及其成因分析[J]. 环境科学, 2015, 36(9): 3230-3237.
doi: 10.1021/es020530q |
[ Zhang Yan, Wu Yong, Yang Jun, et al. Hydrochemical characteristic and reasoning analysis in Siyi Town, Langzhong City[J]. Environmental Science, 2015, 36(9): 3230-3237. ]
doi: 10.1021/es020530q |
|
[33] |
Liu J T, Wang M, Gao Z J, et al. Hydrochemical characteristics and water quality assessment of groundwater in the Yishu River basin[J]. Acta Geophysica, 2020, 68(8): 877-889.
doi: 10.1007/s11600-020-00440-1 |
[34] | 纪媛媛, 周金龙, 孙英, 等. 新疆昌吉市平原区地下水化学特征及质量评价[J]. 南水北调与水利科技, 2021, 19(3): 551-560. |
[ Ji Yuanyuan, Zhou Jinlong, Sun Ying, et al. Groundwater chemical characteristics and quality evaluation for groundwater in plain area of Changji City, Xinjiang[J]. South-to-North Water Transfers and Water Science & Technology, 2021, 19(3): 551-560. ] | |
[35] |
Yang Q, Li Z, Ma H, et al. Identification of the hydrogeochemical processes and assessment of groundwater quality using classic integrated geochemical methods in the southeastern part of Ordos basin, China[J]. Environmental Pollution, 2016, 218(11): 879-888.
doi: 10.1016/j.envpol.2016.08.017 |
[36] | 胡漾, 唐金平, 陈友良, 等. 基于PCA与熵权的贝叶斯地下水环境质量评价模型[J]. 节水灌溉, 2018(12): 60-64. |
[ Hu Yang, Tang Jinping, Chen Youliang, et al. Bayesian groundwater environmental quality assessment model based on principal component analysis and entropy weight[J]. Water Saving Irrigation, 2018(12): 60-64. ] | |
[37] | 张文琦, 董少刚, 马铭言, 等. 岱海盆地地下水化学特征及成因[J]. 干旱区研究, 2021, 38(6): 1546-1555. |
[ Zhang Wenqi, Dong Shaogang, Ma Mingyan, et al. Chemical characteristics sand origin of groundwater in the Daihai Basin[J]. Arid Zone Research, 2021, 38(6): 1546-1555. ] | |
[38] | 冯翠娥, 高存荣, 王俊涛, 等. 内蒙古河套平原浅层高铁高氟地下水分布与成因[J]. 地球学报, 2015, 36(1): 67-76. |
[ Feng Cui’e, Gao Cunrong, Wang Juntao, et al. Distribution and causes of high-iron and high-fluoride shallow groundwater in the Hetao Plain of Inner Mongolia[J]. Acta Geoscientica Sinica, 2015, 36(1): 67-76. ] | |
[39] | 刘宗潇, 朱成立, 翟亚明, 等. 微咸水灌溉对土壤EC值及冬小麦产量的影响[J]. 灌溉排水学报, 2017, 36(3): 59-64. |
[ Liu Zongxiao, Zhu Chengli, Zhai Yaming, et al. Influence of brackish water irrigation on soil EC and yield of winter wheat[J]. Journal of Irrigation and Drainage, 2017, 36(3): 59-64. ] |
[1] | 李小锋, 惠婷婷, 李耀明, 毛洁菲, 王光宇, 范连连. 不同放牧管理方式对新疆山地草原植物群落特征的影响[J]. 干旱区研究, 2024, 41(1): 124-134. |
[2] | 张胜, 张涛, 段雯瑜, 徐利, 顾金洋, 张炜, 李思敏. 基于改进方法的承德地表水环境质量评价[J]. 干旱区研究, 2024, 41(1): 50-59. |
[3] | 汪翔, 吕海深, 朱永华, 郭晨煜. 两种河道洪水演进方法在新疆山区的应用比较[J]. 干旱区研究, 2023, 40(8): 1240-1247. |
[4] | 王超, 马占仓, 潘成南, 吴星月, 宋文丹, 阎平. 新疆苋属新记录植物[J]. 干旱区研究, 2023, 40(8): 1280-1288. |
[5] | 古丽斯旦·艾尼瓦尔, 吐尔洪·努尔东, 地力胡马尔·阿不都克热木, 买买提明·苏来曼. 新疆薄罗藓科植物新记录[J]. 干旱区研究, 2023, 40(8): 1289-1293. |
[6] | 李虹, 李忠勤, 陈普晨, 彭加加. 近20 a新疆阿尔泰山积雪时空变化及其影响因素[J]. 干旱区研究, 2023, 40(7): 1040-1051. |
[7] | 许君利, 韩海东, 王建. 新疆大气PM2.5来源与潜在贡献源分析[J]. 干旱区研究, 2023, 40(6): 874-884. |
[8] | 薛一波, 黄双燕, 张小啸, 雷加强, 李生宇. 新疆2018年冬季雨雪风沙强降尘事件[J]. 干旱区研究, 2023, 40(5): 681-690. |
[9] | 赵克明, 孙鸣婧, 李霞, 施俊杰, 安大维, 许婷婷. 两种典型大气扩散指数在新疆的分布特征及其适用性对比[J]. 干旱区研究, 2023, 40(5): 691-702. |
[10] | 董翰林, 王文婷, 谢云, 阿依达娜·叶斯那力, 江源天, 徐嘉淇. 新疆气候干湿变化特征及其影响因素[J]. 干旱区研究, 2023, 40(12): 1875-1884. |
[11] | 张宗芳, 徐将, 师小军. 新疆野苹果幼苗生长及生物量分配对降水量和降水间隔时间的响应[J]. 干旱区研究, 2023, 40(1): 102-110. |
[12] | 邬晓丹,罗敏,孟凡浩,萨楚拉,尹超华,包玉海. 气候暖湿化背景下新疆极端气候事件时空演变特征分析[J]. 干旱区研究, 2022, 39(6): 1695-1705. |
[13] | 蒋磊,赵毅,张鹏伟,何亮,摆翔. 基于氢氧稳定同位素特征的潜水蒸发影响程度研究[J]. 干旱区研究, 2022, 39(6): 1793-1800. |
[14] | 买买提明·苏来曼,艾拉努尔·卡哈尔,梁灵炜,马木尔别克·马看,王鹏军. 光藓科植物在中国新疆的发现[J]. 干旱区研究, 2022, 39(6): 1852-1855. |
[15] | 古丽斯旦·艾尼瓦尔,王鹏军,艾拉努尔·卡哈尔,买买提明·苏来曼. 腐木烟杆藓(Buxbaumia viridis)在新疆的新记录及在中国分布的历史更正[J]. 干旱区研究, 2022, 39(6): 1856-1861. |
|