干旱区研究 ›› 2022, Vol. 39 ›› Issue (3): 978-985.doi: 10.13866/j.azr.2022.03.31
收稿日期:
2021-11-11
修回日期:
2022-03-18
出版日期:
2022-05-15
发布日期:
2022-05-30
通讯作者:
魏浩,毛培春
作者简介:
田小霞(1980-),女,副研究员,主要从事植物生理生态学研究. E-mail: 基金资助:
TIAN Xiaoxia1(),WEI Xiaofeng2,WEI Hao3(),XU Mingshuang1,MAO Peichun1()
Received:
2021-11-11
Revised:
2022-03-18
Online:
2022-05-15
Published:
2022-05-30
Contact:
Hao WEI,Peichun MAO
摘要:
为筛选苗期抗旱性较强的牧草,用于干旱半干旱地区的人工草地建植。采用盆栽法对6种牧草进行模拟干旱试验,测定其株高(PH)、地上干重(SDW)、地下干重(RDW)、根冠比(RSR)、叶片相对含水量(RWC)、脯氨酸含量(Pro)、可溶性蛋白含量(SP)、抗氧化酶活性等指标,计算单项指标抗旱系数,运用相关分析、主成分分析、隶属函数法等方法对6种牧草进行抗旱性综合评价。结果表明:干旱胁迫对6种供试材料的生长和生理指标均有显著影响。相关分析表明,PH、GR、RDW等12项指标之间呈正相关关系,但这12项指标均与丙二醛(MDA)含量呈负相关关系。主成分分析表明,4个主成分贡献率可达98.40%,可代
田小霞,卫晓锋,魏浩,许明爽,毛培春. 6种牧草苗期耐旱性综合评价[J]. 干旱区研究, 2022, 39(3): 978-985.
TIAN Xiaoxia,WEI Xiaofeng,WEI Hao,XU Mingshuang,MAO Peichun. Comprehensive evaluation of drought tolerance of six forage species at the seedling stage[J]. Arid Zone Research, 2022, 39(3): 978-985.
表1
干旱胁迫对供试材料各性状的影响"
指标 | 处理 | 长穗偃麦草 | 无芒雀麦 | 披碱草 | 扁穗冰草 | 沙打旺 | 紫花苜蓿 |
---|---|---|---|---|---|---|---|
PH/cm | CK | 20.67±1.15ab | 24.13±1.58a | 22.8±1.68ab | 19.13±1.34b | 4.60±0.17c | 5.17±0.44c |
T | 20.20±0.57a | 19.97±0.55a | 21.67±1.22a | 14.10±1.01b | 4.27±0.50c | 4.20±0.23c | |
GR/% | CK | 13.62±1.85a | 9.53±0.72b | 12.34±0.33ab | 11.74±0.5ab | 11.64±0.37ab | 10.44±0.79b |
T | 11.20±0.72a | 6.09±1.62b | 11.27±0.28a | 8.78±0.35b | 8.61±2.78b | 5.57±0.86b | |
SDW/(g·株-1) | CK | 0.068±0.010a | 0.058±0.001ab | 0.062±0.002ab | 0.051±0.001bc | 0.032±0.001d | 0.042±0.001cd |
T | 0.056±0.001a | 0.048±0.002b | 0.053±0.001a | 0.025±0.001c | 0.025±0.001c | 0.030±0.001c | |
RDW/(g·株-1) | CK | 0.023±0.001b | 0.025±0.001b | 0.036±0.001a | 0.035±0.001a | 0.016±0.001c | 0.016±0.001c |
T | 0.032±0.001b | 0.018±0.001c | 0.038±0.001a | 0.019±0.001c | 0.017±0.001c | 0.011±0.001d | |
RSR | CK | 0.33±0.02d | 0.43±0.02cd | 0.59±0.05b | 0.68±0.01a | 0.5±0.05bc | 0.39±0.01d |
T | 0.57±0.04b | 0.37±0.01c | 0.72±0.04a | 0.77±0.06a | 0.68±0.03ab | 0.37±0.02c | |
RWC/% | CK | 89.62±1.00bc | 94.31±0.43a | 89.2±1.72c | 92.81±2.33abc | 93.78±0.95ab | 94.63±0.69a |
T | 83.74±2.07a | 73.11±1.53cd | 76.8±0.94bc | 71.55±0.68d | 79.65±1.31b | 76.82±0.87bc | |
Chl/(mg·L-1) | CK | 1.11±0.12b | 0.88±0.07c | 0.85±0.39c | 0.97±0.17c | 1.70±0.04a | 1.02±0.12b |
T | 0.98±0.04b | 0.81±0.01c | 0.83±0.01c | 0.79±0.04c | 1.63±0.02a | 0.83±0.05c | |
SOD/(U·g-1 FW) | CK | 1239.7±141.3b | 1044.7±74.9bc | 1039.5±74.5bc | 979.5±8.8c | 1470.9±272.1ab | 1981.5±338.7a |
T | 1386.4±103.5bc | 905.8±77.3cd | 1082.0±81.8cd | 860.0±145.4d | 1686.2±105.7ab | 2023.1±284.6a | |
POD/(U·g-1 FW) | CK | 3154.6±82.6c | 3314.6±245.5c | 2055.8±83.5d | 3778.8±799.0bc | 4715.9±2.4b | 7378.5±26.3a |
T | 3895.5±134.0b | 2416.1±42.5c | 2625.1±99.4c | 2316.5±164.8c | 3822.6±93.8b | 5449.3±198.8a | |
CAT/(nmol·min-1·g-1 FW) | CK | 529.6±48.5b | 936.6±13.0a | 115.1±3.8d | 923.1±11.6a | 237.1±4.5c | 201.4±3.1c |
T | 763.4±15.4c | 1040.1±19.9a | 155.9±13.0f | 863.0±11.7b | 324.0±17.8d | 248.7±3.4e | |
Pro/(μmol·g-1 FW) | CK | 34.24±1.04ab | 25.34±6.11b | 37.53±1.20a | 32.58±0.63ab | 27.92±3.87ab | 24.85±2.27b |
T | 40.12±5.37a | 21.53±0.68b | 40.08±0.70a | 20.74±1.01b | 32.66±0.91a | 17.73±0.73b | |
SP/(mg·g-1 FW ) | CK | 8.18±1.51a | 8.97±1.53a | 8.27±0.44a | 8.96±0.49a | 9.76±1.26a | 10.12±1.39a |
T | 9.38±0.41ab | 7.61±0.20c | 8.61±0.57bc | 7.33±0.87c | 10.34±0.09a | 8.43±0.50bc | |
MDA/(nmol·g-1 FW) | CK | 20.45±0.28d | 18.95±0.42d | 29.69±0.48c | 34.94±0.68b | 15.53±0.66e | 41.93±1.14a |
T | 20.90±0.76d | 21.03±1.24d | 31.31±1.78c | 43.07±3.24b | 18.35±1.18d | 50.29±1.31a |
表2
干旱胁迫下6种供试材料生长和生理指标的抗旱系数(ω值)"
供试材料 | 单项指标 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PH | GR | SDW | RDW | RSR | RWC | Chl | SOD | POD | CAT | Pro | SP | MDA | |
长穗偃麦草 | 0.977 | 0.822 | 0.824 | 1.377 | 1.694 | 0.934 | 0.881 | 1.118 | 1.235 | 1.442 | 1.171 | 1.147 | 1.022 |
无芒雀麦 | 0.827 | 0.640 | 0.829 | 0.743 | 0.863 | 0.775 | 0.916 | 0.867 | 0.729 | 1.111 | 0.850 | 0.848 | 1.110 |
披碱草 | 0.950 | 0.914 | 0.855 | 1.065 | 1.234 | 0.861 | 0.981 | 1.041 | 1.277 | 1.355 | 1.068 | 1.041 | 1.055 |
扁穗冰草 | 0.737 | 0.748 | 0.487 | 0.552 | 1.124 | 0.771 | 0.816 | 0.880 | 0.613 | 0.935 | 0.637 | 0.818 | 1.233 |
沙打旺 | 0.928 | 0.739 | 0.781 | 1.065 | 1.346 | 0.849 | 0.961 | 1.146 | 0.811 | 1.366 | 1.170 | 1.060 | 1.182 |
紫花苜蓿 | 0.813 | 0.534 | 0.706 | 0.673 | 0.948 | 0.812 | 0.816 | 1.021 | 0.739 | 1.235 | 0.714 | 0.833 | 1.199 |
表3
干旱胁迫下6种供试材料生长和生理指标的相关系数矩阵"
指标 | 各指标间的相关系数 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PH | GR | SDW | RDW | RSR | RWC | Chl | SOD | POD | CAT | Pro | SP | MDA | |
PH | 1.000 | ||||||||||||
GR | 0.602 | 1.000 | |||||||||||
SDW | 0.809 | 0.253 | 1.000 | ||||||||||
RDW | 0.963** | 0.619 | 0.691 | 1.000 | |||||||||
RSR | 0.733 | 0.656 | 0.238 | 0.867* | 1.000 | ||||||||
RWC | 0.899* | 0.555 | 0.557 | 0.956** | 0.898* | 1.000 | |||||||
Chl | 0.705 | 0.580 | 0.741 | 0.555 | 0.232 | 0.341 | 1.000 | ||||||
SOD | 0.814* | 0.322 | 0.470 | 0.796 | 0.738 | 0.836* | 0.400 | 1.000 | |||||
POD | 0.871* | 0.747 | 0.671 | 0.847* | 0.673 | 0.852* | 0.538 | 0.578 | 1.000 | ||||
CAT | 0.951** | 0.379 | 0.776 | 0.899* | 0.669 | 0.895* | 0.556 | 0.906* | 0.784 | 1.000 | |||
Pro | 0.961** | 0.601 | 0.746 | 0.941** | 0.749 | 0.826* | 0.762 | 0.804 | 0.738 | 0.882* | 1.000 | ||
SP | 0.952** | 0.692 | 0.610 | 0.982** | 0.896* | 0.936** | 0.598 | 0.837* | 0.822* | 0.880* | 0.956** | 1.000 | |
MDA | -0.791 | -0.588 | -0.789 | -0.796 | -0.528 | -0.727 | -0.521 | -0.338 | -0.890* | -0.663 | -0.683 | -0.705 | 1.000 |
表4
干旱胁迫下各指标的主成分分析"
主成分 | 各指标特征向量 | 特征值 | 贡献率 /% | 累计 贡献率/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PH | GR | SDW | RDW | RSR | RWC | Chl | SOD | POD | CAT | Pro | SP | ||||
第一主成分 | 0.991 | 0.662 | 0.725 | 0.981 | 0.816 | 0.932 | 0.657 | 0.832 | 0.878 | 0.931 | 0.961 | 0.983 | 9.092 | 75.768 | 75.768 |
第二主成分 | 0.121 | -0.093 | 0.605 | -0.093 | -0.543 | -0.300 | 0.645 | -0.205 | 0.016 | 0.060 | 0.129 | -0.131 | 1.278 | 10.649 | 86.417 |
第三主成分 | -0.057 | 0.737 | -0.210 | -0.030 | 0.106 | -0.116 | 0.264 | -0.375 | 0.218 | -0.331 | -0.019 | 0.046 | 0.986 | 8.217 | 94.634 |
第四主成分 | -0.030 | 0.020 | -0.226 | -0.048 | 0.087 | -0.165 | 0.285 | 0.261 | -0.397 | -0.046 | 0.210 | 0.097 | 0.452 | 3.764 | 98.398 |
表5
供试材料的综合指标值CIx、隶属函数值µ(x)、综合评价D值及抗旱类型"
供试材料 | 综合指标值 | 隶属函数值 | D值 | 排序 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CI1 | CI2 | CI3 | CI4 | µ(1) | µ(2) | µ(3) | µ(4) | ||||
长穗偃麦草 | 3.721 | -1.227 | -0.193 | -0.510 | 1.000 | 0.008 | 0.499 | 0.000 | 0.813 | 1 | |
无芒雀麦 | -1.980 | 1.562 | 0.005 | -0.248 | 0.236 | 1.000 | 0.576 | 0.148 | 0.344 | 4 | |
披碱草 | 2.366 | 0.883 | 1.077 | -0.344 | 0.818 | 0.759 | 0.986 | 0.094 | 0.798 | 2 | |
扁穗冰草 | -3.744 | -1.249 | 1.113 | 0.259 | 0.000 | 0.000 | 1.000 | 0.435 | 0.101 | 6 | |
沙打旺 | 1.819 | 0.240 | -0.504 | 1.257 | 0.745 | 0.530 | 0.380 | 1.000 | 0.701 | 3 | |
紫花苜蓿 | -2.182 | -0.210 | -1.497 | -0.413 | 0.209 | 0.370 | 0.000 | 0.055 | 0.203 | 5 | |
权重 | 0.770 | 0.108 | 0.084 | 0.038 |
[1] |
Zhang S H, Xu X F, Sun Y M, et al. Influence of drought hardening on the resistance physiology of potato seedlings under drought stress[J]. Journal of Integrative Agriculture, 2018, 17(2): 336-347.
doi: 10.1016/S2095-3119(17)61758-1 |
[2] |
Bahrami F, Arzani A, Karimi V. Evaluation of yield-based drought tolerance indices for screening safflower genotypes[J]. Agronomy Journal, 2014, 106(4): 1219-1224.
doi: 10.2134/agronj13.0387 |
[3] |
Fang Y, Xiong L. General mechanisms of drought response and their application in drought resistance improvement in plants[J]. Cellular and Molecular Life Sciences, 2015, 72(4): 673-689.
doi: 10.1007/s00018-014-1767-0 |
[4] | 杨育苗, 蒋志荣, 安力. 干旱胁迫下旱砂地籽瓜生理响应及其抗旱性评价[J]. 干旱区研究, 2018, 35(3): 735-742. |
[ Yang Yumiao, Jiang Zhirong, An Li. Physiological response and drought resistance of seed watermelons in dry sandy land[J]. Arid Zone Research, 2018, 35(3): 735-742. ] | |
[5] |
Jin R, Shi H, Han C, et al. Physiological changes of purslane (Portulaca oleracea L. ) after progressive drought stress and rehydration[J]. Scientia Horticulturae, 2015, 194: 215-221.
doi: 10.1016/j.scienta.2015.08.023 |
[6] | 杜建雄, 师尚礼, 刘金荣, 等. 干旱胁迫和复水对草地早熟禾3个品种生理特性的影响[J]. 草地学报, 2010, 18(1): 73-77. |
[ Du Jianxiong, Shi Shangli, Liu Jinrong, et al. Effects of drought stress and rewatering on physiological characteristics of three kentucky bluegrass cultivars[J]. Acta agrestia sinica, 2010, 18(1): 73-77. ] | |
[7] | 刘文瑜, 何斌, 杨发荣, 等. 不同品种藜麦幼苗对干旱胁迫和复水的生理响应[J]. 草业科学, 2019, 36(10): 2656-2666. |
[ Liu Wenyu, He Bin, Yang Farong, et al. Physiological response to drought and re-watering of different quinoa varieties[J]. Pratacultural Science, 2019, 36(10): 2656-2666. ] | |
[8] | 刘婷婷, 陈道钳, 王仕稳, 等. 不同品种高粱幼苗在干旱复水过程中的生理生态响应[J]. 草业学报, 2018, 27(6): 100-110. |
[ Liu Tingting, Chen Daoqian, Wang Shiwen, et al. Physio-ecological responses to drought and subsequent re-watering in sorghum seedlings[J]. Acta Prataculturae Sinina, 2018, 27(6): 100-110. ] | |
[9] | Chen D, Chen D Q, Wu X, et al. Genotypic variation Greenth and physiological response to drought stress and re-watering reveals the critical role of recovery in drought adaptation in maize seedlings[J]. Frontiers in Plant Science, 2015, 6: 1241. |
[10] | 姜华, 毕玉芬, 陈连仙, 等. 旱作条件下紫花苜蓿生理特性的研究[J]. 草地学报, 2012, 20(6): 1077-1080. |
[ Jiang Hua, Bi Yufen, Chen Lianxian, et al. Physiologica characteristics of alfalfa under dry-farming conditions[J]. Acta Agaestia Sinica, 2012, 20(6): 1077-1080. ] | |
[11] | Jevgenija N, Gederts E I.Interacting influence of cold stratification treatment and osmotic potential on seed germination of Triglochin maritina L.[J]. Acta Universitatis Latviens, 2007, 723: 115-122. |
[12] | 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006: 208-218. |
[ Gao Junfeng. The Experimental Instruction for Plant Physiology[M]. Beijing: Higher Education Press, 2006: 208-218. ] | |
[13] | 李佩佩, 李毅, 苏世平, 等. 抗旱优良红砂家系的早期选择与评价[J]. 干旱区研究, 2020, 37(3): 706-714. |
[ Li Peipei, Li Yi, Su Shiping, et al. Early selection and evaluation of superior families with drought resistance in Reaumuria soongorica[J]. Arid Zone Research, 2020, 37(3): 706-714. ] | |
[14] | 刘小慧, 王重丽, 王梦茹, 等. 圭亚那柱花草苗期抗旱性评价及抗旱种质鉴定[J]. 草地学报, 2020, 28(4): 956-967. |
[ Liu Xiaohui, Wang Chongli, Wang Mengru, et al. Evaluation on drought-resistance of Stylssanthss guianensis and identification for drought-resistance germplasms in seedling stage[J]. Acta Agresia Sinica, 2020, 28(4): 956-967. ] | |
[15] | 田小霞, 许明爽, 郑明利, 等. 黄花草木樨苗期抗旱性鉴定及抗旱指标筛选[J]. 干旱区资源与环境, 2021, 35 (10): 120-127. |
[ Tian Xiaoxia, Xu Mingshuang, Zheng Mingli, et al. Drought resistance identification and drought resistance indices screening of Melilotus officinalis resources at seedling stage[J]. Journal of Arid Land Resources and Environment, 2021, 35(10): 120-127. ] | |
[16] | 李金航, 齐秀慧, 徐程扬, 等. 华北4产地黄栌幼苗根系形态对水分胁迫的短期响应[J]. 北京林业大学学报, 2014, 36(1): 48-54. |
[ Li Jinghang, Qi Xiuhui, Xu Chengyang, et al. Short-term responses of root morphology to droght stress of Cotinus coggygria seedlings from four varied locations in northern China[J]. Jordanal of Beijing Forresty University, 2014, 36(1): 48-54. ] | |
[17] | 孙三杰, 李建明, 宗建伟, 等. 亚低温与水分胁迫对番茄幼苗根系形态及叶片结构的影响[J]. 应用生态学报, 2012, 23(11): 3027-3032. |
[ Sun Sanjie, Li Jianming, Zong Jianwei, et al. Effects of sub-low temperature and drought stress on root morphology and leaf structure of tomato sedlings[J]. China Journal of Applied Ecology, 2012, 23(11): 3027-3032. ] | |
[18] | 王平, 王沛, 孙万斌, 等. 8份披碱草属牧草苗期抗旱性综合评价[J]. 草地学报, 2020, 28(2): 397-404. |
[ Wang Ping, Wang Pei, Sun Wanbin, et al. Comprehensive evaluation of drought resistance of eight Elymus germplasms at seedling stage[J]. Acta Agrestia Sinica, 2020, 28(2): 397-404. ] | |
[19] | Reddy A R, Chaitanya K V, Vivekanandan M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants[J]. Journal of Plant Physiology Journal, 2004, 161: 1189-1202. |
[20] |
Seki M, Umezawa T, Urano K, et al. Regulatory metabolic networks in drought stress responses[J]. Current Opinion in Plant Biology, 2007, 10: 296-302.
doi: 10.1016/j.pbi.2007.04.014 |
[21] |
Ashraf M, Foolad M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance[J]. Environmental and Experimental Botany, 2007, 59: 206-216.
doi: 10.1016/j.envexpbot.2005.12.006 |
[22] |
Bartels D, Sunkar R. Drought and salt tolerance in plants[J]. Critical Reviews in Plant Sciences, 2005, 24: 23-58.
doi: 10.1080/07352680590910410 |
[23] | 姜梦辉, 孙丰磊, 杨阳, 等. 棉花陆海重组自交系群体花铃期抗旱性鉴定及评价[J]. 干旱区研究, 2020, 37(6): 1635-1643. |
[ Jiang Menghui, Sun Fenglei, et al. Identification and evaluation of drought resistance of upland-island recombination inbred line population at blossoming and boll-forming stages[J]. Arid Zone Research, 2020, 37(6): 1635-1643. ] | |
[24] |
Zou J, Hu W, Li Y X, et al. Screening of drought resistance indices and evaluation of drought resistance in cotton (Gossypium hirsutum L. )[J]. Journal of Integrative Agriculture, 2020, 19(2): 495-508.
doi: 10.1016/S2095-3119(19)62696-1 |
[25] | 石永红, 万里强, 刘建宁, 等. 多年生黑麦草抗旱性主成分及隶属函数分析[J]. 草地学报, 2010, 18(5): 669-672. |
[ Shi Yonghong, Wan Liqiang, Liu Jianning, et al. Analysis of the principal components and the subordinate function of Lolium perenne drouht resistance[J]. Acta Agrestia Sinica, 2010, 18(5): 669-672. ] | |
[26] | 李京蓉, 周学斌, 马真, 等. 6种高寒牧区禾本科牧草抗旱性研究与评价[J]. 草地学报, 2018, 26(3): 659-665. |
[ Li Jingrong, Zhou Xuebin, Ma Zhen, et al. Research and evaluation on drought resistance of six grasses in high-cold pastoral area[J]. Acta Agrestia Sinica, 2018, 26(3): 659-665. ] | |
[27] | 张小娇, 祁娟, 曹文侠, 等. 干旱胁迫下垂穗披碱草苗期抗旱生理特性的影响[J]. 草原与草坪, 2014, 34(5): 55-59. |
[ Zhang Xiaojiao, Qi Juan, Cao Wenxia, et al. Effect of drought stress on physiological characteristics of Elymus nutans in seedling stage[J]. Grassland and Turf, 2014, 34(5): 55-59. ] | |
[28] | 杨伟, 刘文辉, 马祥, 等. 干旱胁迫对2种不同抗旱性老芒麦幼苗ROS积累及抗氧化系统的影响[J]. 草地学报, 2020, 28(3): 684-693. |
[ Yang Wei, Liu Wenhui, Ma Xiang, et al. Effect of ROS accumulation and antioxidant system in two different drought resistant Elymus sibiricus under drought stress[J]. Acta Agrestia Sinica, 2020, 28(3): 684-693. ] | |
[29] | 李怡, 侯向阳, 武自念, 等. 羊草种质资源抗旱性评价. 中国草地学报, 2019, 41(1): 75-82. |
[ Li Yi, Hou Xiangyang, Wu Zinian, et al. Comprehensive evaluation on drought-resistance of Leymus chinensis germplasm resources[J]. Chinese Journal of Grassland, 2019, 41(1): 75-82. ] |
[1] | 张胜, 张涛, 段雯瑜, 徐利, 顾金洋, 张炜, 李思敏. 基于改进方法的承德地表水环境质量评价[J]. 干旱区研究, 2024, 41(1): 50-59. |
[2] | 白炬, 刘晓林, 李申, 梁哲铭, 胥子航, 王永亮, 杨治平. 污泥热碱液对干旱胁迫下小青菜生长的缓解机制[J]. 干旱区研究, 2024, 41(1): 80-91. |
[3] | 颜巧芳, 单立山, 解婷婷, 王红永, 师亚婷. 珍珠柴幼苗叶片和根系形态特征对干旱胁迫的响应[J]. 干旱区研究, 2024, 41(1): 92-103. |
[4] | 徐梦琦,高艳菊,张志浩,黄彩变,曾凡江. 干旱胁迫对疏叶骆驼刺幼苗生长和生理的影响[J]. 干旱区研究, 2023, 40(2): 257-267. |
[5] | 黄洲,杨广,苏军,李小龙,刘兵,何新林,乔长录,李鹏飞,王春霞,赵丽. 水资源“三条红线”约束下玛纳斯河灌区退耕土壤质量评价[J]. 干旱区研究, 2022, 39(6): 1942-1951. |
[6] | 李嘉珞,郭米山,高广磊,阿拉萨,杜凤梅,殷小琳,丁国栋. 沙地樟子松菌根化幼苗对干旱胁迫的生理响应[J]. 干旱区研究, 2021, 38(6): 1704-1712. |
[7] | 汤东,程平,杨建军,李宏,孙建文,王凯. 天山北坡山前植物对干旱胁迫的生理响应[J]. 干旱区研究, 2021, 38(6): 1683-1694. |
[8] | 范向龙,吕新,张泽,高攀,张强,印彩霞,易翔. 基于距离聚类与K-means动态聚类的棉田土壤养分评价研究[J]. 干旱区研究, 2021, 38(4): 980-989. |
[9] | 杨蕾,璩向宁,马正虎,张矞勋,田媛,何志润. 宁夏阅海湿地水质评价及其空间差异性研究[J]. 干旱区研究, 2021, 38(3): 640-649. |
[10] | 杨彪生,单立山,马静,解婷婷,杨洁,韦昌林. 红砂幼苗生长及根系形态特征对干旱-复水的响应[J]. 干旱区研究, 2021, 38(2): 469-478. |
[11] | 桑钰,高文礼,再努尔·吐尔逊,范雪,马晓东. 干旱胁迫下AMF对多枝柽柳幼苗和疏叶骆驼刺根系生长和氮素吸收分配的影响[J]. 干旱区研究, 2021, 38(1): 247-256. |
[12] | 朱薇, 周宏飞, 李兰海, 闫英杰. 哈萨克斯坦农业水土资源承载力评价及其影响因素识别[J]. 干旱区研究, 2020, 37(1): 254-263. |
[13] | 张静鸽, 田福平, 苗海涛, 黄泽, 武高林. 水分胁迫及复水过程4种牧草形态及其生理特征表达[J]. 干旱区研究, 2020, 37(1): 193-201. |
[14] | 夏振华,陈亚宁,朱成刚,周莹莹,陈晓林. 干旱胁迫环境下的胡杨叶片气孔变化[J]. 干旱区研究, 2018, 35(5): 1111-1117. |
[15] | 宋立宁, 朱教君, 康宏樟. 樟子松幼苗水力结构参数和生长特征对模拟降水梯度的响应[J]. 干旱区研究, 2013, 30(6): 1021-1027. |
|