干旱区研究 ›› 2025, Vol. 42 ›› Issue (4): 646-657.doi: 10.13866/j.azr.2025.04.07
陆善洪1(
), 毕华兴1,2,3,4(
), 赵丹阳1, 管凝1, 韩金丹1
收稿日期:2024-11-10
修回日期:2025-03-05
出版日期:2025-04-15
发布日期:2025-04-10
通讯作者:
毕华兴. E-mail: bhx@bjfu.edu.cn作者简介:陆善洪(2001-),男,硕士研究生,主要从事林业生态工程研究. E-mail: lushanhong@bjfu.edu.cn
基金资助:
LU Shanhong1(
), BI Huaxing1,2,3,4(
), ZHAO Danyang1, GUAN Ning1, HAN Jindan1
Received:2024-11-10
Revised:2025-03-05
Published:2025-04-15
Online:2025-04-10
摘要:
以晋西黄土区吉县蔡家川流域不同林龄(18 a、22 a、26 a、30 a、33 a、40 a)刺槐人工林为研究对象,使用Hedley磷素分级方法,探究不同林龄刺槐人工林0~100 cm土层土壤磷组分(H2O-P、NaHCO3-P、NaOH-P、D.HCl-P、C.HCl-P、Residual-P)分布模式,明晰不同林龄刺槐林地土壤磷组分变化并探讨土壤理化性质对土壤磷组分变化的影响。结果表明:(1) 不同林龄刺槐林地0~100 cm土壤深度下的平均土壤全磷含量为:30 a(590.44 mg·kg-1)>26 a(571.68 mg·kg-1)>22 a(527.05 mg·kg-1)>18 a(517.83 mg·kg-1)>33 a(490.71 mg·kg-1)>40 a(464.49 mg·kg-1);6个林龄中土壤磷组分占比为:稳定态磷>残留态磷>中等活性态磷>活性态磷。(2) 土壤磷各组分则呈现出先增加后减少的趋势,30 a刺槐林的土壤磷各组分含量最大。随着土层深度增加,土壤全磷及土壤磷组分的含量均减少。(3) 冗余分析结果显示,土壤全氮含量和土壤pH分别是影响土壤磷组分变化的主要因素。造林初期的刺槐林土壤磷组分逐渐积累,在中林龄时达到高峰,随着林龄的增长磷的限制效应逐渐增强,达到成熟后土壤磷组分逐渐下降。因此,从磷分含量限制的角度而言,在30 a时适当施用磷肥可改善晋西黄土区刺槐人工林后期的磷缺乏问题。
陆善洪, 毕华兴, 赵丹阳, 管凝, 韩金丹. 晋西黄土区不同林龄刺槐人工林土壤磷组分特征[J]. 干旱区研究, 2025, 42(4): 646-657.
LU Shanhong, BI Huaxing, ZHAO Danyang, GUAN Ning, HAN Jindan. Patterns of soil phosphorous fractions across a chronosequence of Robinia pseudoacacia plantations in the loess region of western Shanxi Province[J]. Arid Zone Research, 2025, 42(4): 646-657.
表1
不同林龄刺槐人工林样地基本信息"
| 样地 编号 | 经度 | 纬度 | 林龄/a | 坡向 | 坡度 /(°) | 海拔 /m | 密度 /(株·hm-2 ) | 平均树高 /m | 平均胸径 /cm | 地上生物量/(g·m-2) | 地下生物量/(g·m-2) | 凋落物生物量/(g·m-2) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 110°45′35″E | 36°16′15″N | 18 | 阳坡 | 17 | 1021 | 1750 | 8.05±1.51 | 7.73±1.84 | 125.85 | 19.55 | 149.37 |
| 2 | 110°45′26″E | 36°16′13″N | 阳坡 | 20 | 1091 | 1525 | 7.95±1.32 | 8.03±1.57 | 155.04 | 20.32 | 150.12 | |
| 3 | 110°45′43″E | 36°16′23″N | 阳坡 | 22 | 970 | 1500 | 7.68±1.52 | 7.93±1.43 | 133.57 | 19.76 | 149.84 | |
| 4 | 110°45′25″E | 36°16′22″N | 22 | 阳坡 | 18 | 1107 | 1700 | 8.30±1.49 | 8.55±2.41 | 179.52 | 21.12 | 151.52 |
| 5 | 110°45′20″E | 36°16′18″N | 阳坡 | 23 | 1150 | 1550 | 8.75±1.43 | 8.85±1.40 | 182.49 | 21.40 | 151.94 | |
| 6 | 110°45′17″E | 36°15′53″N | 阳坡 | 19 | 1040 | 1525 | 8.55±1.72 | 8.66±1.53 | 180.35 | 21.34 | 151.84 | |
| 7 | 110°44′16″E | 36°16′19″N | 26 | 阳坡 | 19 | 1149 | 1625 | 9.08±1.79 | 9.13±2.60 | 206.52 | 22.56 | 176.25 |
| 8 | 110°44′18″E | 36°16′35″N | 阳坡 | 22 | 1200 | 1525 | 9.50±1.56 | 9.63±2.00 | 210.35 | 22.85 | 181.34 | |
| 9 | 110°44′21″E | 36°16′53″N | 阳坡 | 20 | 1220 | 1350 | 9.35±1.70 | 9.30±1.56 | 213.84 | 22.96. | 182.01 | |
| 10 | 110°44′04″E | 36°16′37″N | 30 | 阳坡 | 25 | 1173 | 1600 | 10.21±2.47 | 10.21±2.47 | 231.38 | 23.02 | 254.07 |
| 11 | 110°44′12″E | 36°16′19″N | 阳坡 | 22 | 1235 | 1450 | 10.11±1.87 | 10.30±1.45 | 235.48 | 23.32 | 255.52 | |
| 12 | 110°44′10″E | 36°16′42″N | 阳坡 | 24 | 1200 | 1525 | 10.51±2.05 | 10.82±1.71 | 230.37 | 23.51 | 254.38 | |
| 13 | 110°44′05″E | 36°14′31″N | 33 | 阳坡 | 27 | 1174 | 1600 | 11.11±1.57 | 11.11±1.57 | 263.64 | 24.49 | 256.01 |
| 14 | 110°44′03″E | 36°14′45″N | 阳坡 | 25 | 1210 | 1625 | 11.71±1.47 | 11.61±1.07 | 260.75 | 24.12 | 255.74 | |
| 15 | 110°44′05″E | 36°14′40″N | 阳坡 | 27 | 1140 | 1550 | 12.21±2.20 | 11.33±1.63 | 267.33 | 25.07 | 256.14 | |
| 16 | 110°44′28″E | 36°14′43″N | 40 | 阳坡 | 24 | 1232 | 1550 | 13.95±2.28 | 13.05±1.28 | 296.85 | 36.49 | 305.26 |
| 17 | 110°44′24″E | 36°14′39″N | 阳坡 | 28 | 1050 | 1626 | 14.05±2.80 | 13.35±1.35 | 295.64 | 36.10 | 304.95 | |
| 18 | 110°46′13″E | 36°16′13″N | 阳坡 | 18 | 1226 | 1400 | 13.75±1.88 | 13.57±1.18 | 299.37 | 36.99 | 307.24 |
表2
0~100 cm土层下不同林龄刺槐人工林基本土壤理化性质"
| 指标 | 土层深度 /cm | 林龄/a | |||||
|---|---|---|---|---|---|---|---|
| 18 | 22 | 26 | 30 | 33 | 40 | ||
| SOC/(g·kg-1) | 0~20 | 5.660±1.147a | 3.726±0.577c | 4.192±0.176bc | 4.450±0.560bc | 6.346±0.295a | 5.168±0.604ab |
| 20~40 | 3.217±0.195bc | 3.868±0.407b | 2.353±0.190d | 3.390±0.764b | 5.064±0.531a | 2.496±0.163cd | |
| 40~60 | 2.784±0.257b | 4.245±0.885a | 1.703±0.046c | 3.427±0.786ab | 3.572±0.081ab | 1.697±0.614c | |
| 60~80 | 2.028±0.981bc | 3.529±1.294ab | 1.664±0.384c | 3.877±1.201a | 3.533±0.839ab | 1.577±0.077c | |
| 80~100 | 1.838±0.351b | 2.818±0.901a | 1.558±0.181b | 2.906±0.480a | 3.227±0.439a | 0.948±0.127b | |
| TN/(g·kg-1) | 0~20 | 0.625±0.041a | 0.652±0.107a | 0.683±0.050a | 0.647±0.179a | 0.616±0.036a | 0.620±0.032a |
| 20~40 | 0.516±0.051a | 0.618±0.185a | 0.530±0.130a | 0.657±0.122a | 0.522±0.198a | 0.396±0.084a | |
| 40~60 | 0.366±0.056a | 0.470±0.233a | 0.399±0.029a | 0.486±0.095a | 0.448±0.056a | 0.299±0.068a | |
| 60~80 | 0.336±0.095ab | 0.466±0.057a | 0.366±0.017ab | 0.375±0.118ab | 0.377±0.043ab | 0.281±0.016b | |
| 80~100 | 0.324±0.031ab | 0.379±0.079a | 0.341±0.021a | 0.353±0.072a | 0.236±0.062bc | 0.206±0.029c | |
| pH | 0~20 | 8.263±0.025a | 8.148±0.018a | 8.092±0.015a | 7.867±0.015a | 7.790±0.028a | 7.762±0.020a |
| 20~40 | 8.275±0.025a | 8.158±0.023a | 8.120±0.020a | 7.910±0.020a | 7.837±0.021a | 7.800±0.018a | |
| 40~60 | 8.281±0.018a | 8.197±0.015a | 8.130±0.010a | 7.950±0.026a | 7.883±0.018a | 7.820±0.018a | |
| 60~80 | 8.287±0.015a | 8.247±0.018a | 8.133±0.021a | 7.993±0.015a | 7.910±0.020a | 7.850±0.021a | |
| 80~100 | 8.313±0.021a | 8.283±0.015a | 8.141±0.012a | 8.027±0.015a | 7.960±0.015a | 7.850±0.021a | |
| SWC/% | 0~20 | 18.296±0.362a | 15.056±0.300b | 14.331±0.271bc | 12.156±1.810d | 13.917±0.579bc | 13.508±0.011cd |
| 20~40 | 12.777±0.062a | 9.484±0.261c | 7.957±0.071e | 8.468±0.064d | 8.644±0.023d | 10.252±0.135b | |
| 40~60 | 7.360±0.025e | 9.011±0.289b | 7.607±0.430de | 7.979±0.137d | 9.488±0.003a | 8.466±0.069c | |
| 60~80 | 7.523±0.022d | 9.083±0.748ab | 8.794±0.122ab | 7.821±0.720cd | 9.473±0.478a | 8.446±0.069bc | |
| 80~100 | 7.287±0.076c | 8.198±0.462b | 8.203±0.126b | 8.391±0.642b | 9.624±0.099a | 8.479±0.166b | |
| BD/(g·cm-3) | 0~20 | 1.076±0.012b | 1.073±0.013b | 1.051±0.097b | 1.095±0.045b | 1.213±0.039a | 1.146±0.043ab |
| 20~40 | 1.188±0.001bc | 1.127±0.050c | 1.229±0.083b | 1.359±0.010a | 1.335±0.000a | 1.185±0.050bc | |
| 40~60 | 1.156±0.015b | 1.112±0.017b | 1.352±0.004a | 1.324±0.025a | 1.324±0.027a | 1.328±0.078a | |
| 60~80 | 1.254±0.045c | 1.114±0.107b | 1.313±0.019ab | 1.398±0.059a | 1.298±0.036ab | 1.318±0.035ab | |
| 80~100 | 1.225±0.020ab | 1.272±0.166ab | 1.353±0.015a | 1.284±0.060ab | 1.197±0.048b | 1.307±0.018ab | |
| [1] | Flora A, Bright R V, Ken E E, et al. Effects of soil depth and characteristics on phosphorus adsorption isotherms of different land utilization types: Phosphorus adsorption isotherms of soil[J]. Soil & Tillage Research, 2021, 213: 105139. |
| [2] | 侯贵荣, 毕华兴, 魏曦, 等. 黄土残塬沟壑区刺槐林枯落物水源涵养功能综合评价[J]. 水土保持学报, 2019, 33(2): 251-257. |
| [Hou Guirong, Bi Huaxing, Wei Xi, et al. Comprehensive evaluation of water conservation function of litters of Robinia pseudoacacia forest lands in gully region on Loess Plateau[J]. Journal of Soil and Water Conservation, 2019, 33(2): 251-257.] | |
| [3] | 张卓婷, 陶然, 罗如熠, 等. 次生演替过程中土壤磷组分及有效性研究进展[J]. 应用与环境生物学报, 2024, 30(1): 176-185. |
| [Zhang Zhuoting, Tao Ran, Luo Ruyi, et al. Changes in soil phosphorus fractions and its availability during secondary succession: A review[J]. Chinese Journal of Applied and Environmental Biology, 2024, 30(1): 176-185.] | |
| [4] | Cao Y, Chen Y. Coupling of plant and soil C: N: P stoichiometry in black locust (Robinia pseudoacacia) plantations on the Loess Plateau, China[J]. Trees, 2017, 31: 1559-1570. |
| [5] | Fisk M, Santangelo S, Minick K. Carbon mineralization is promoted by phosphorus and reduced by nitrogen addition in the organic horizon of northern hardwood forests[J]. Soil Biology and Biochemistry, 2015, 81: 212-218. |
| [6] |
Johnson A H, Frizano J, Vann D R. Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure[J]. Oecologia, 2003, 135: 487-499.
doi: 10.1007/s00442-002-1164-5 pmid: 12695899 |
| [7] | 任常琦, 王进闯, 程汉亭, 等. 不同林龄橡胶(Hevea brasiliensis)林土壤微生物群落和磷组分的变化[J]. 生态学报, 2017, 37(23): 7983-7993. |
| [Ren Changqi, Wang Jinchuang, Cheng Hanting, et al. Effects of rubber (Hevea brasiliensis) plantations on soil phosphorusfractions and microbial community composition[J]. Acta Ecologica Sinica, 2017, 37(23): 7983-7993.] | |
| [8] | 杨宬君, 张鑫, 马孟平, 等. 华西雨屏区不同林龄柳杉人工林表层土壤磷组分特征[J]. 生态学杂志, 2024, 43(3): 623-632. |
| [Yang Chengjun, Zhang Xin, Ma Mengping, et al. Characteristics of topsoil phosphorus fractions along a chronosequence of Cryptomeria japonica var. sinensis plantations in the rainy area of western China[J]. Chinese Journal of Ecology, 2024, 43(3): 623-632.] | |
| [9] | 谷雨晴, 袁在翔, 牛莹莹, 等. 紫金山两种典型林分土壤磷组分特征及其影响因素[J]. 森林与环境学报, 2024, 44(2): 136-147. |
| [Gu Yuqing, Yuan Zaixiang, Niu Yingying, et al. Characteristics of soil phosphorus fractions of two typical stands in Zijinshan Mountain and their driving factors[J]. Journal of Forest and Environment, 2024, 44(2): 136-147.] | |
| [10] | Rodrigues M, Pavinato P S, Withers P J A, et al. Legacy phosphorus and no tillage agriculture in tropical oxisols of the Brazilian savanna[J]. Science of the Total Environment, 2016, 542: 1050-1061. |
| [11] | Yu P, Zhang X, Gu H, et al. Soil phosphorus fractions and their availability over natural succession from clear-cut of a mixed broadleaved and Korean pine forest in northeast China[J]. Journal of Forestry Research, 2022, 33: 256-260. |
| [12] | 胡一帆, 刘宣, 李宇, 等. 华西雨屏区不同林龄柳杉人工林土壤磷组分特征[J]. 生态学报, 2024, 44(2): 686-698. |
| [Hu Yifan, Liu Xuan, Li Yu, et al. Patterns of soil phosphorus fractions across a chronosequence of Cryptomeria japonica var sinensis in rainy area of western China[J]. Acta Ecologica Sinica, 2024, 44(2): 686-698.] | |
| [13] | 赵丹阳, 毕华兴, 侯贵荣, 等. 不同林龄刺槐林植被与土壤养分变化特征[J]. 中国水土保持科学(中英文), 2021, 19(3): 56-63. |
| [Zhao Danyang, Bi Huaxing, Hou Guirong, et al. Evolution of vegetation and soil nutrients of artificial Robinia pseudoacacia forest[J]. Science of Soil and Water Conservation, 2021, 19(3): 56-63.] | |
| [14] | Liu W, Liu Y, Wu S, et al. Dynamics of plant nutrient requirements and acquisition strategies after afforestation: A study on the Loess Plateau, China[J]. Forest Ecology and Management, 2023, 544: 121141. |
| [15] | 巩大鹏, 毕华兴, 王劲峰, 等. 晋西黄土区不同密度刺槐人工林叶片-枯落物-土壤化学计量特征[J]. 林业科学研究, 2024, 37(2): 156-164. |
| [Gong Dapeng, Bi Huaxing, Wang Jinfeng, et al. Stoichiometric characteristics of leaves-litter-soil of Robinia pseudoacacia of different densities in the loess region of western Shanxi Province[J]. Forest Research, 2024, 37(2): 156-164.] | |
| [16] |
张佳凝, 张建军, 赖宗锐, 等. 林分密度对刺槐人工林土壤养分和微生物群落的影响[J]. 干旱区研究, 2025, 42(2): 274-288.
doi: 10.13866/j.azr.2025.02.08 |
|
[Zhang Jianing, Zhang Jianjun, Lai Zongrui, et al. Effects of stand density on soil nutrients and microbial communities in Robinia pseudoacacia plantations[J]. Arid Zone Research, 2025, 42(2): 274-288.]
doi: 10.13866/j.azr.2025.02.08 |
|
| [17] |
王思淇, 张建军, 张彦勤, 等. 晋西黄土区不同密度刺槐林下植物群落物种多样性[J]. 干旱区研究, 2023, 40(7): 1141-1151.
doi: 10.13866/j.azr.2023.07.11 |
|
[Wang Siqi, Zhang Jianjun, Zhang Yanqin, et al. Species diversity of plant communities under Robinia pseudoacacia forests of different densities in the Loess Plateau of western Shanxi Province[J]. Arid Zone Research, 2023, 40(7): 1141-1151.]
doi: 10.13866/j.azr.2023.07.11 |
|
| [18] | Zhao F, Kang D, Han X, et al. Soil stoichiometry and carbon storage in long-term afforestation soil affected by understory vegetation diversity[J]. Ecological Engineering, 2015, 74: 415-422. |
| [19] | 穆晓慧, 李世清, 党蕊娟. 黄土高原石灰性土壤不同形态磷组分分布特征[J]. 中国生态农业学报, 2008, 16(6): 1341-1347. |
| [Mu Xiaohui, Li Shiqing, Dang Ruijuan. Distribution of phosphorus fractionations in calcareous soils of the Loess Plateau[J]. Chinese Journal of Eco-Agriculture, 2008, 16(6): 1341-1347.] | |
| [20] | Carl C, Biber P, Veste M, et al. Key drivers of competition and growth partitioning among Robinia pseudoacacia L. trees[J]. Forest Ecology and Management, 2018, 430: 86-93. |
| [21] |
王勃, 张建军, 赖宗锐, 等. 土壤含水量对探地雷达探测植物根系构型精度的影响[J]. 干旱区研究, 2024, 41(3): 456-466.
doi: 10.13866/j.azr.2024.03.10 |
|
[Wang Bo, Zhang Jianjun, Lai Zongrui, et al. Effect of soil moisture content on the accuracy of root configuration detection by ground penetrating radar[J]. Arid Zone Research, 2024, 41(3): 456-466.]
doi: 10.13866/j.azr.2024.03.10 |
|
| [22] | Hedley M J, Stewart J W B, Chauhan B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations[J]. Soil Science Society of America Journal, 1982, 46(5): 970-976. |
| [23] | Sui Y, Thompson M L, Shang C. Fractionation of phosphorus in a mollisol amended with biosolids[J]. Soil Science Society of America Journal, 1999, 63(5): 1174-1180. |
| [24] | 曾晓敏, 高金涛, 范跃新, 等. 中亚热带森林转换对土壤磷积累的影响[J]. 生态学报, 2018, 38(13): 4879-4887. |
| [Zeng Xiaomin, Gao Jintao, Fan Yuexin, et al. Effect of soil factors after forest conversion on the accumulation of phosphorus species in mid-subtropical forests[J]. Acta Ecologica Sinica, 2018, 38(13): 4879-4887.] | |
| [25] | 杨琳. 黄土高原沟壑区刺槐林土壤磷素与微生物群落结构特征研究[D]. 杨凌: 西北农林科技大学, 2020. |
| [Yang Lin. Study on Characteristics of Soil Phosphorus and Microbial Community Structure in Robinia pseudoacacia Forest in Gully Area of Loess Plateau[D]. Yangling: Northwest Agriculture and Forestry University, 2020.] | |
| [26] |
马任甜, 安韶山, 黄懿梅. 黄土高原不同林龄刺槐林碳、氮、磷化学计量特征[J]. 应用生态学报, 2017, 28(9): 2787-2793.
doi: 10.13287/j.1001-9332.201709.020 |
|
[Ma Rentian, An Shaoshan, Huang Yimei. C, N and P stoichiometry characteristics of different-aged Robinia pseudoacacia plantations on the Loess Plateau, China[J]. Chinese Journal of Applied Ecology, 2017, 28(9): 2787-2793.]
doi: 10.13287/j.1001-9332.201709.020 |
|
| [27] | 赵敏, 马宝有, 赵江平, 等. 黄土丘陵沟壑区不同林龄刺槐叶片氮、磷重吸收特征[J]. 应用与环境生物学报, 2023, 29(2): 401-407. |
| [Zhao Min, Ma Baoyou, Zhao Jiangping, et al. Characteristics of leaf nutrient resorption of Robinia pseudoacacia atdifferent ages in hilly and gully regions[J]. Chinese Journal of Applied and Environmental Biology, 2023, 29(2): 401-407.] | |
| [28] | 杨小燕. 外源有机酸对黑土土壤磷形态及有效性的影响[D]. 哈尔滨: 东北林业大学, 2016. |
| [Yang Xiaoyan. Effects of Exogenous Organic Acids on Phosphorus Forms and Availability in Black Soil[D]. Harbin:Northeast Forestry University, 2016.] | |
| [29] | Liu J L, Yang Z L, Dang P, et al. Response of soil microbial community dynamics to Robinia pseudoacacia L. afforestation in the loess plateau: A chronosequence approach[J]. Plant and Soil, 2018, 423(1-2): 327-338. |
| [30] | Spohn M, Novak, Incze J, et al. Dynamics of soil carbon, nitrogen, and phosphorus in calcareous soils after land-use abandonment- A chronosequence study[J]. Plant and Soil, 2016, 401(1-2): 185-196. |
| [31] | Zhang Y, Li Y, Wang S, et al. Soil phosphorus fractionation and its association with soil phosphate-solubilizing bacteria in a chronosequence of vegetation restoration[J]. Ecological Engineering, 2021, 164: 106208. |
| [32] | 张磊, 贾淑娴, 李啸灵, 等. 亚热带米槠天然林凋落物和根系输入变化对土壤磷组分的影响[J]. 生态学报, 2022, 42(2): 656-666. |
| [Zhang Lei, Jia Shuxian, Li Xiaoling, et al. Effects of litter and root inputs changes on soil phosphorus fractions in asubtropical natural forest of Castanopsis carlesii[J]. Acta Ecologica Sinica, 2022, 42(2): 656-666.] | |
| [33] | 张晓曦, 胡嘉伟, 刘凯旋, 等. 黄土丘陵区刺槐人工林林龄增加土壤微环境变化对凋落物分解的影响[J]. 生态学报, 2024, 44(7): 2931-2945. |
| [Zhang Xiaoxi, Hu Jiawei, Liu Kaixuan, et al. Effects of the alterations in soil micro-environment with increasing standage of Robinia pseudocacia plantation on the litter decomposition in the Loess Hilly Region[J]. Acta Ecologica Sinica, 2024, 44(7): 2931-2945.] | |
| [34] | 刘旭军, 田慧霞, 程小琴, 等. 凋落物处理对不同林龄华北落叶松针阔混交林土壤磷组分的影响[J]. 生态学杂志, 2019, 38(10): 3024-3032. |
| [Liu Xujun, Tian Huixia, Cheng Xiaoqin, et al. Effects of litter manipulation on soil phosphorus fractions in Larix principis-rupprechtii conifer and broadleaved forests at different ages[J]. Chinese Journal of Ecology, 2019, 38(10): 3024-3032.] | |
| [35] | 林开淼, 郭剑芬, 杨智杰, 等. 不同林龄人促天然更新林土壤磷素形态及有效性分析[J]. 中南林业科技大学学报, 2014, 34(9): 6-11. |
| [Lin Kaimiao, Guo Jianfen, Yang Zhijie, et al. Soil phosphorus forms and availability in natural regeneration by man-aided Castanopsis carlesii forests[J]. Journal of Central South University of Forestry & Technology, 2014, 34(9): 6-11.] | |
| [36] | 张鑫, 马铭鸿, 谷会岩, 等. 红松人工更新对表层土壤磷有效性及时效性的影响[J]. 东北林业大学学报, 2018, 46(6): 63-68. |
| [Zhang Xin, Ma Minghong, Gu Huiyan, et al. Effects of artificial regeneration of Pinus koraiensis on phosphorus availability and timeliness in surface soils[J]. Journal of Northeast Forestry University, 2018, 46(6): 63-68.] | |
| [37] | 王亚茹, 林鑫宇, 惠昊, 等. 杨树人工林类型对土壤磷组分的影响[J]. 生态学杂志, 2021, 40(6): 1549-1556. |
|
[Wang Yaru, Lin Xinyu, Hui Hao, et al. Effects of poplar plantation types on soil phosphorus fractions[J]. Chinese Journal of Ecology, 2021, 40(6): 1549-1556.]
doi: DOI: 10.13292/j.1000-4890.202106.015 |
|
| [38] | 于博威, 刘高焕, 刘庆生, 等. 晋西黄土丘陵区不同退耕年限刺槐林土壤养分效应[J]. 水土保持学报, 2016, 30(4): 188-193. |
| [Yu Bowei, Liu Gaohuan, Liu Qingsheng, et al. Effects of soil nutrient in Robinia psedudoacia forests with various ages inthe loess hilly region of western Shanxi Province[J]. Journal of Soil and Water Conservation, 2016, 30(4): 188-193.] | |
| [39] | 刘迪. 黄土高原刺槐人工林土壤磷组分及其有效性对穿透雨改变的响应[D]. 杨凌: 西北农林科技大学, 2019. |
| [Liu Di. Responses of Soil Phosphorus Fractionation and Availability to Throughfall Manipulation in a Planted Robinia pseudoacacia Forest on Loess Plateau[D]. Yangling: Northwest A & F University, 2019.] | |
| [40] | 魏安琪, 魏天兴, 刘海燕, 等. 黄土区刺槐和油松人工林土壤微生物PLFA分析[J]. 北京林业大学学报, 2019, 41(4): 88-98. |
| [Wei Anqi, Wei Tianxing, Liu Haiyan, et al. PLFA analysis of soil microorganism under Robinia pseudoacacia and Pinus tabuliformis plantation in loess area[J]. Journal of Beijing Forestry University, 2019, 41(4): 88-98.] | |
| [41] | Zhang H, Shi L, Lu H, et al. Drought promotes soil phosphorus transformation and reduces phosphorus bioavailability in a temperate forest[J]. Science of the Total Environment, 2020, 732: 139295. |
| [42] | 陈凤, 潘政, 翟亚明, 等. 不同坡度下侵蚀性降水对土壤理化性质的影响[J]. 中国水土保持, 2024(3): 55-60. |
| [Chen Feng, Pan Zheng, Zhai Yaming, et al. The effect of erosive precipitation on physical and chemical properties of soil in different slopes[J]. Soil and Water Conservation in China, 2024(3): 55-60.] |
| [1] | 张佳凝, 张建军, 赖宗锐, 赵炯昌, 胡亚伟, 李阳, 卫朝阳. 林分密度对刺槐人工林土壤养分和微生物群落的影响[J]. 干旱区研究, 2025, 42(2): 274-288. |
| [2] | 王勃, 张建军, 赖宗锐, 赵炯昌, 胡亚伟, 杨周, 李阳, 卫朝阳. 土壤含水量对探地雷达探测植物根系构型精度的影响[J]. 干旱区研究, 2024, 41(3): 456-466. |
| [3] | 王思淇, 张建军, 张彦勤, 赵炯昌, 胡亚伟, 李阳, 唐鹏, 卫朝阳. 晋西黄土区不同密度刺槐林下植物群落物种多样性[J]. 干旱区研究, 2023, 40(7): 1141-1151. |
| [4] | 胡亚伟,孙若修,申明爽,施政乐,刘畅,徐勤涛,刘俊廷,张建军. 晋西黄土区土地利用方式对土壤C:N:P化学计量特征及土壤理化性质的影响[J]. 干旱区研究, 2021, 38(4): 990-999. |
| [5] | 张晓梅, 邸利, 史再军, 费俊娥, 王正安. 甘肃泾川中沟小流域不同坡位刺槐人工林土壤水分特征 [J]. 干旱区研究, 2019, 36(5): 1300-1308. |
| [6] | 刘青柏, 刘明国, 王玉涛, 唐敬超. 不同林型立地土壤水分性状及其持水能力的比较[J]. 干旱区研究, 2011, 28(5): 775-779. |
|
||