[1] |
刘晓迪, 宋孝玉, 覃琳, 等. 祁连山北麓牧区植被生长季不同等级降水时空变化特征[J]. 水资源与水工程学报, 2020, 31(4): 31-39.
|
|
[Liu Xiaodi, Song Xiaoyu, Qin Lin, et al. Spatio-temporal variations of different grade precipitation in the pastoral area on the northern slope of Qilian Mountains during vegetation growing season[J]. Journal of Water Resources and Water Engineering, 2020, 31(4): 31-39. ]
|
[2] |
张百娟, 李宗省, 王昱, 等. 祁连山北坡中段降水稳定同位素特征及水汽来源分析[J]. 环境科学, 2019, 40(12): 5272-5285.
|
|
[Zhang Baijuan, Li Zongxing, Wang Yu, et al. Characteristics of stable isotopes and analysis of water vapor sources of precipitation at the northern slope of the Qilian Mountains[J]. Environmental Science, 2019, 40(12): 5272-5285. ]
|
[3] |
陈乾, 陈添宇, 肖宏斌. 祁连山区夏季降水过程天气分析[J]. 气象科技, 2010, 38(1): 26-31.
|
|
[Chen Qian, Chen Tianyu, Xiao Hongbin. Synoptic analysis of summer precipitation over Qilian Mountains[J]. Meteorological Science and Technology, 2010, 38(1): 26-31. ]
|
[4] |
付双喜, 张鸿发, 楚荣忠. 河西走廊中部一次强降水过程的多普勒雷达资料分析[J]. 干旱区研究, 2009, 26(5): 656-663.
|
|
[Fu Shuangxi, Zhang Hongfa, Chu Rongzhong. Aanalzing on a heavy precipitation with Doppler radar data in the middle of Hexi Corridor[J]. Arid Zone Research, 2009, 26(5): 656-663. ]
|
[5] |
付双喜, 张洪芬, 杨丽杰, 等. 地形影响下祁连山北麓不同类型降水特征对比分析[J]. 干旱区研究, 2021, 38(5): 1226-1234.
doi: 10.13866/j.azr.2021.05.04
|
|
[Fu Shuangxi, Zhang Hongfen, Yang Lijie, et al. Comparative analysis of radar characteristics of different types of precipitation on the northern foothills of Qilian Mountain by the influence of topography[J]. Arid Zone Research, 2021, 38(5): 1226-1234. ]
doi: 10.13866/j.azr.2021.05.04
|
[6] |
赵宇, 朱皓清, 蓝欣, 等. 基于CloudSat资料的北上江淮气旋暴雪云系结构特征[J]. 地球物理学报, 2018, 61(12): 4789-4804.
doi: 10.6038/cjg2018L0697
|
|
[Zhao Yu, Zhu Haoqing, Lan Xin, et al. Structure of the snowstorm cloud associated with northward Jianghuai cyclone based on CloudSat satellite data[J]. Chinese Journal of Geophysics, 2018, 61(12): 4789-4804. ]
|
[7] |
黄兴友, 陆琳, 洪滔, 等. 利用毫米波云雷达数据反演层云微物理参数和云内湍流耗散率[J]. 大气科学学报, 2020, 43(5): 908-916.
|
|
[Huang Xingyou, Lu Lin, Hong Tao, et al. A case study on the retrieval of microphysical parameter retrieval and in-loud stratus turbulent dissipation rate by millimeter-wave cloud radar measuremen[J]. Transactions of Atmospheric Sciences, 2020, 43(5): 908-916. ]
|
[8] |
廖菲, 洪延超, 郑国光. 地形对降水的影响研究概述[J]. 气象科技, 2007, 35(3): 309-316.
|
|
[Liao Fei, Hong Yanchao, Zheng Guoguang. Overview of the research on the influence of topography on precipitation[J]. Meteorological Science and Technology, 2007, 35(3): 309-316. ]
|
[9] |
Pruppacher H R, Klett J D. Microstructure of Atmospheric Clouds and Precipitation[M]. Dordrecht, Springer Nether-lands: Microphysics of Clouds and Precipitation, 2010.
|
[10] |
Bailey M P, Hallett J. A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies[J]. Journal of the Atmospheric Sciences, 2009, 66(9): 2888-2899.
|
[11] |
Miles N L, Verlinde J, Clothiaux E E. Cloud droplet size distributions in low-level stratiform clouds[J]. Journal of the Atmospheric Sciences, 2000, 57(2): 295-311.
|
[12] |
李岩瑛, 张强, 徐霞, 等. 祁连山及周边地区降水与地形的关系[J]. 冰川冻土, 2010, 32(1): 52-61.
|
|
[Li Yanying, Zhang Qiang, Xu Xia, et al. Relationship between precipitation and terrain over the Qilian Mountains and their ambient areas[J]. Journal of Glaciology and Geocryology, 2010, 30(1): 52-61.]
|
[13] |
孙美平, 张海瑜, 巩宁刚, 等. 基于TRMM降水订正数据的祁连山地区最大降水高度带研究[J]. 自然资源学报, 2019, 34(3): 646-657.
doi: 10.31497/zrzyxb.20190317
|
|
[Sun Meiping, Zhang Haiyu, Gong Ninggang, et al. Study on maximum precipitation height zone in Qilian Mountains area based on TRMM precipitation data[J]. Journal of Natural Resources, 2019, 34(3): 646-657. ]
doi: 10.31497/zrzyxb.20190317
|
[14] |
Li L, Li J, Chen H, et al. Diurnal variations of summer precipitation over the Qilian Mountains in Northwest China[J]. Journal of Meteorological Research, 2019, 33(1): 21-33. ]
|
[15] |
杨洁帆, 胡向峰, 雷恒池, 等. 太行山东麓层状云微物理特征的飞机观测研究[J]. 大气科学, 2021, 45(1): 88-106.
|
|
[Yang Jiefan, Hu Xiangfeng, Lei Hengchi, et al. Airborne observations of microphysical characteristics of stratiform cloud over eastern side of Taihang Mountains[J]. Atmospheric Sciences, 2021, 45(1): 88-106. ]
|
[16] |
刘春文, 郭学良, 段玮, 等. 云南省积层混合云微物理特征飞机观测[J]. 应用气象学报, 2022, 33(2): 142-154.
|
|
[Liu Chunwen, Guo Xueliang, Duan Wei, et al. Observation and analysis of microphysical characteristics of stratiform clouds with embedded convections in Yunnan[J]. Journal of Applied Meteorological Science, 2022, 33(2): 142-154. ]
|
[17] |
黄兴友, 芦荀, 黄勇, 等. 层状云微物理参数反演及其辐射效应的个例研究[J]. 大气科学学报, 2019, 42(5): 769-777.
|
|
[Huang Xingyou, Lu Xun, Huang Yong, et al. A case study on the microphysical parameter retrieval and radiative effects of stratus clouds[J]. Transactions of Atmospheric Sciences, 2019, 42(5) :769-777. ]
|
[18] |
Kenneth Sassen. Deep orograohic cloud structure and composition derived from comprehensive remote sensing measurements[J]. Journal of Climate and Applied Meteorology, 1984, 2(3): 568-583.
|
[19] |
洪钟祥, 黄美元. 南岳云滴谱第二极大及其他特征[C]// 我国云雾降水微物理特征的研究. 北京: 科学出版社, 1965: 18-29.
|
|
[Hong Zhongxiang, Huang Meiyuan. The second maximum and other features of clouds drop spectrum in Nanyue[C]// Study of Cloud Recipitation Microphysical Characteristics in China. Beijing: Science Press, 1965: 18-29. ]
|
[20] |
Hobbs P V. Twenty years of airborne resear chat the university of Washington[J]. Bulletin of the American Meteorological Society, 1991, 72(11): 1707-1716.
|
[21] |
Lu C, Niu S, Liu Y, et al. Empirical relationship between entrainment rate and microphysics in cumulus clouds[J]. Geophysical Research Letters, 2013, 40(10): 2333-2338.
|