[1] |
Intergovernmental Panel on Climate Change(IPCC). Climate Change 2013-The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge: Cambridge University Press, 2014.
|
[2] |
吴会娟, 鹿化煜, 王菁菁, 等. 全球沙漠面积和粉尘排放量的新估算[J]. 科学通报, 2022, 67(9): 860-871.
|
|
[Wu Huijuan, Lu Huayu, Wang Jingjing, et al. A new estimate of global desert area and quantity of dust emission[J]. Chinese Science Bulletin, 2022, 67(9): 860-871. ]
|
[3] |
Kok J F, Storelvmo T, Karydis V A, et al. Mineral dust aerosol impacts on global climate and climate change[J]. Nature Reviews Earth & Environment, 2023, 4(2): 71-86.
|
[4] |
Yu H, Chin M, Yuan T, et al. The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations[J]. Geophysical Research Letters, 2015, 42(6): 1984-1991.
|
[5] |
Nie W, Wang T, Xue L K, et al. Asian dust storm observed at a rural mountain site in southern China: Chemical evolution and heterogeneous photochemistry[J]. Atmospheric Chemistry and Physics, 2012, 12(24): 11985-11995.
|
[6] |
Bagnold R A. The Physics of Blown Sand and Desert Dunes[M]. Berlin:Springer, 1941.
|
[7] |
Gillette D A, Passi R. Modeling dust emission caused by wind erosion[J]. Journal of Geophysical Research: Atmospheres, 1988, 93(D11): 14233-14242.
|
[8] |
Alfaro S C, Gomes L. Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distributions in source areas[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D16): 18075-18084.
|
[9] |
Shao Y. Simplification of a dust emission scheme and comparison with data[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D10): 22437-22443.
|
[10] |
Kok J F, Parteli E J R, Michaels T I, et al. The physics of wind-blown sand and dust[J]. Reports on Progress in Physics, 2012, 75(10): 106901.
|
[11] |
Wei G, Zhang C, Li Q, et al. Grain-size composition of the surface sediments in Chinese deserts and the associated dust emission[J]. CATENA, 2022, 219: 106615.
|
[12] |
韩永翔, 杨胜利, 方小敏, 等. 塔里木盆地中的大气环流及昆仑山北坡的黄土堆积[J]. 中国沙漠, 2006, 26(3): 351-355.
|
|
[Han Yongxiang, Yang Shengli, Fang Xiaomin, et al. Atmospheric circulation in Tarim Basin and loess accumulation in northern slope of Kunlun Mountains[J]. Journal of Desert Research, 2006, 26(3): 351-355. ]
|
[13] |
刘新春, 钟玉婷, 王敏仲, 等. 塔里木盆地大气降尘变化特征及影响因素分析[J]. 中国沙漠, 2010, 30(4): 954-960.
|
|
[Liu Xinchun, Zhong Yuting, Wang Minzhong, et al. Atmospheric dustfall variation and factor analysis in Tarim Basin[J]. Journal of Desert Research, 2010, 30(4): 954-960. ]
|
[14] |
程红霞, 林粤江, 陈鹏, 等. 塔里木盆地沙尘天气日数变化及影响因素[J]. 干旱区研究, 2023, 40(11): 1707-1717.
doi: 10.13866/j.azr.2023.11.01
|
|
[Cheng Hongxia, Lin Yuejiang, Chen Peng, et al. Spatial characteristics of sand-dust weather days and influencing factors in the Tarim Basin[J]. Arid Zone Research, 2023, 40(11): 1707-1717. ]
doi: 10.13866/j.azr.2023.11.01
|
[15] |
孟露, 赵天良, 何清, 等. 近30年塔里木盆地浮尘天气及持续浮尘滞空的气候特征[J]. 气象学报, 2022, 80(2): 322-333.
|
|
[Meng Lu, Zhao Tianliang, He Qing, et al. Climatic characteristics of floating dust and persistent floating dust over the Tarim Basin in the recent 30 years[J]. Acta Meteorologica Sinica, 2022, 80(2):322-333. ]
|
[16] |
陈思宇, 黄建平, 李景鑫, 等. 塔克拉玛干沙漠和戈壁沙尘起沙, 传输和沉降的对比研究[J]. 中国科学: 地球科学, 2017, 47(8): 939-957.
|
|
[Chen Siyu, Huang Jianping, Li Jingxin, et al. Comparison of dust emissions, transport, and deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011[J]. Scientia Sinica (Terrae), 2017, 47(8): 939-957. ]
|
[17] |
Uno I, Eguchi K, Yumimoto K, et al. Asian dust transported one full circuit around the globe[J]. Nature Geoscience, 2009, 2(8): 557-560.
|
[18] |
王慧琴. 塔里木盆地大气降尘时空变化及TSP理化特性分析[D]. 乌鲁木齐: 新疆大学, 2012.
|
|
[Wang Huiqin. Analysis on the Spatio-temporal Variations of Dust-fall and the Physical-chemical Properties of TSP in Tarim Basin[D]. Urumqi: Xinjiang University, 2012. ]
|
[19] |
Xia X, Zong X. Shortwave versus longwave direct radiative forcing by Taklimakan dust aerosols[J]. Geophysical Research Letters, 2009, 36(7): L07803.
|
[20] |
Lau W K M, Kim M K, Kim K M, et al. Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols[J]. Environmental Research Letters, 2010, 5(2): 025204.
|
[21] |
吴硕秋, 马晓燕. 利用风云四、MODIS及CALIPSO卫星资料分析西北沙尘过程的垂直和水平分布特征[J]. 环境科学学报, 2020, 40(8): 2892-2901.
|
|
[Wu Shuoqiu, Ma Xiaoyan. Analysis of dust vertical and horizontal distribution during dust events in northwest China based on FY-4A, MODIS and CALIPSO satellite data[J]. Acta Scientiae Circumstantiae, 2020, 40(8): 2892-2901. ]
|
[22] |
阴璐璐, 何清, 李京龙, 等. 基于地基雷达探究和田市一次沙尘污染过程[J]. 中国环境科学, 2023, 43(12): 6290-6300.
|
|
[Yin Lulu, He Qing, Li Jinglong, et al. Observation and study of a sand and dust pollution process in Hotan City based on ground-based lidar[J]. China Environmental Science, 2023, 43(12): 6290-6300. ]
|
[23] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.沙尘天气等级(GB/T 20480-2017)[S]. 北京: 中国标准出版社, 2017.
|
|
[ General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China.Classification of Sand and Dust Weather(GB/T20480-2017)[S]. Beijing: Standards Press of China, 2017. ]
|
[24] |
Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999-2049.
|
[25] |
Stein A F, Draxler R R, Rolph G D, et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system[J]. Bulletin of the American Meteorological Society, 2015, 96(12): 2059-2077.
|
[26] |
Fernald F G. Analysis of atmospheric lidar observations: Some comments[J]. Applied Optics, 1984, 23(5): 652-653.
pmid: 18204618
|
[27] |
贾瑞, 李君, 祝清哲, 等. 中国西北地区气溶胶的三维分布特征及其成因[J]. 中国沙漠, 2021, 41(3): 34-43.
doi: 10.7522/j.issn.1000-694X.2021.00008
|
|
[Jia Rui, Li Jun, Zhu Qingzhe, et al. Three-dimensional distribution and formation causes of aerosols over Northwest China[J]. Journal of Desert Research, 2021, 41(3): 34-43. ]
doi: 10.7522/j.issn.1000-694X.2021.00008
|
[28] |
廖家艳, 周天, 韩璧森, 等. 我国西北半干旱区气溶胶类型的地基激光雷达判别[J]. 干旱气象, 2023, 41(4): 570-578.
doi: 10.11755/j.issn.1006-7639(2023)-04-0570
|
|
[Liao Jiayan, Zhou Tian, Han Bisen, et al. Aerosol types discrimination in semi-arid region of Northwest China using ground-based lidar data[J]. Journal of Arid Meteorology, 2023, 41(4): 570-578. ]
|
[29] |
李晶晶, 何清, 阴璐璐, 等. 基于激光雷达的新疆民丰地区一次沙尘污染过程研究[J]. 环境科学学报, 2024, 44(9): 93-102.
|
|
[Li Jingjing, He Qing, Yin Lulu et al. Lidar-based study of a sand and dust pollution process in Minfeng area, Xinjiang, China[J]. Acta Scientiae Circumstantiae, 2024, 44(9): 93-102. ]
|
[30] |
Ge J M, Huang J P, Xu C P, et al. Characteristics of Taklimakan dust emission and distribution: A satellite and reanalysis field perspective[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(20): 11-772.
|
[31] |
Hu Q, Wang H, Goloub P, et al. The characterization of Taklamakan dust properties using a multiwavelength Raman polarization lidar in Kashi, China[J]. Atmospheric Chemistry and Physics, 2020, 20(22): 13817-13834.
|