干旱区研究 ›› 2023, Vol. 40 ›› Issue (9): 1391-1403.doi: 10.13866/j.azr.2023.09.03

• 天气与气候 • 上一篇    下一篇

塔里木盆地浮尘滞空天气客观分型

朱从祯1(),赵天良1,2(),孟露1,杨兴华3,何清1,买买提艾力·买买提依明1   

  1. 1.中国气象局乌鲁木齐沙漠气象研究所,新疆塔克拉玛干沙漠气象国家野外科学观测研究站,中国气象局塔克拉玛干沙漠气象野外科学试验基地,新疆沙漠气象与沙尘暴重点实验室,新疆 乌鲁木齐 830002
    2.南京信息工程大学,气象灾害预报预警与评估协同创新中心,中国气象局气溶胶-云-降水重点实验室,江苏 南京 210044
    3.山西师范大学地理科学学院,山西 太原 030032
  • 收稿日期:2023-02-17 修回日期:2023-05-16 出版日期:2023-09-15 发布日期:2023-09-28
  • 通讯作者: 赵天良
  • 作者简介:朱从祯(1997-),男,硕士研究生,主要从事沙漠边界层研究. E-mail: zcz_nuist@163.com
  • 基金资助:
    国家自然科学基金项目(41905014);国家自然科学基金项目(42275196);科技创新团队(天山创新团队)项目(2022TSYCTD0007);新疆气象局引导性计划项目(YD202206)

Objective weather classification of persistent floating dust weather in the Tarim Basin

ZHU Congzhen1(),ZHAO Tianliang1,2(),MENG Lu1,YANG Xinghua3,HE Qing1,Ali MAMTIMIN1   

  1. 1. Institute of Desert Meteorology, China Meteorological Administration, National Observation and Research Station of Desert Meteorology, Taklimakan Desert of Xinjiang, Taklimakan Desert Meteorology Field Experiment Station of CMA, Xinjiang Key Laboratory of Desert Meteorology and Sandstorm, Urumqi 830002, Xinjiang, China
    2. Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, Jiangsu, China
    3. School of Geography Science, Shanxi Normal University, Taiyuan 030032, Shanxi, China
  • Received:2023-02-17 Revised:2023-05-16 Online:2023-09-15 Published:2023-09-28
  • Contact: Tianliang ZHAO

摘要:

本文利用2011—2020年塔里木盆地多站浮尘日数据,筛选出396个浮尘滞空日。采用ERA5气象再分析资料,应用PCT算法对塔里木盆地浮尘滞空日地面及高空环流进行客观分型,并分析典型浮尘滞空个例,以揭示浮尘滞空与高低空天气环流之间的联系。结果表明:地面天气型可分为高压前部型、高压底部型和均压场型,不同地面天气型下气象条件和污染物浓度特征存在一定差异;地面天气系统演变过程为高压前部型-高压底部型-均压场型,高空天气系统演变过程为西风槽后型、高压脊型交替出现-平直纬向型;当地面西伯利亚冷高压东移南下,高空受槽后和伊朗高压控制时,浮尘滞空天气处于发生和发展阶段,地面PM10浓度较高;当地面为均压场,无明显气压系统活动,高空为平直纬向环流时,浮尘滞空天气趋于结束。

关键词: 浮尘滞空, 客观天气分型, T-mode主成分分析法, 塔里木盆地

Abstract:

This study utilized observational data on floating dust days from multiple stations across the Tarim Basin spanning 2011 to 2020. In total, 396 days characterized by persistent floating dust were selected. Employing ERA5 meteorological reanalysis data, the PCT algorithm was used to objectively classify near-surface and upper-layer circulation patterns associated with persistent floating dust in the Tarim Basin. Furthermore, typical synoptic processes accompanying persistent floating dust were selected for analysis. The aim was to elucidate the relationship between persistent floating dust and synoptic circulation at different altitudes. The findings revealed three distinct near-surface weather patterns during persistent floating dust days: high-pressure front, high-pressure bottom, and uniform pressure field. Variations in meteorological conditions and pollutant concentrations were evident among these surface weather patterns. The near-surface weather system evolved from the high-pressure front to high-pressure bottom, culminating in the uniform pressure field. The upper-layer weather system alternated between the westerly trough type and the high-pressure ridge-zonal latitudinal type. As the Siberian cold high-pressure system moved eastward and southward, upper-layer circulations were influenced by the westerly trough and the Iranian high-pressure system. Persistent floating dust events occurred and developed alongside elevated near-surface PM10 concentrations. These events concluded when a near-surface uniform pressure field prevailed, marked by limited air pressure system activity and an upper-layer circulation characterized by the zonal latitudinal pattern.

Key words: persistent floating dust, objective weather classification, principal component analysis in T-mode, Tarim Basin