干旱区研究 ›› 2023, Vol. 40 ›› Issue (9): 1382-1390.doi: 10.13866/j.azr.2023.09.02 cstr: 32277.14.j.azr.2023.09.02

• 天气与气候 • 上一篇    下一篇

稳态风沙流沙粒起跳速度概率分布模型

蒋缠文1,2,3(),王晓艳2   

  1. 1.陕西师范大学地理科学与旅游学院,陕西 西安 710119
    2.渭南师范学院环境与生命科学学院,陕西省河流湿地生态与环境重点实验室,陕西 渭南 714000
    3.中国科学院沙漠与沙漠化重点实验室,甘肃 兰州 730000
  • 收稿日期:2023-05-05 修回日期:2023-06-24 出版日期:2023-09-15 发布日期:2023-09-28
  • 作者简介:蒋缠文(1984-),男,副教授,研究方向为风沙物理学. E-mail: jiangchanwen@126.com
  • 基金资助:
    国家自然科学基金青年项目(41901012);中国科学院沙漠与沙漠化重点实验室开放课题(KLDD-2021-005);中国博士后科学基金项目(2019M663615);陕西省教育厅科研计划项目(22JS017)

Liftoff velocity distribution model of aeolian sand grains in saturated wind-sand flow

JIANG Chanwen1,2,3(),WANG Xiaoyan2   

  1. 1. School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119, Shaanxi, China
    2. Key Laboratory for Ecology and Environment of River Wetlands in Shaanxi Province, College of Environment and Life Sciences, Weinan Normal University, Weinan 714000, Shaanxi, China
    3. Key Laboratory of Desert and Desertification, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
  • Received:2023-05-05 Revised:2023-06-24 Published:2023-09-15 Online:2023-09-28

摘要:

颗粒起跳速度概率分布函数是泥沙输运和粉尘释放模型中的重要输入参数。然而,为了可靠描述这种分布函数,需要准确测量近地层风沙流内起跳颗粒的运动轨迹。本文使用高速摄影系统和颗粒轨迹检测算法相结合测量了风洞沙床面附近部分溅射颗粒、没有引起溅射的反弹颗粒以及引起1个溅射的反弹颗粒的轨迹,通过分析三种起跳模式对应的起跳速度概率分布构建稳态风沙流跃移颗粒起跳速度的概率分布模型。结果表明:(1) 三种起跳模式的起跳角度和起跳速度均服从Lognormal概率分布。(2) 所有起跳颗粒的起跳角度概率分布方程几乎不受起跳模式影响。(3) 所有起跳颗粒的起跳速度概率分布方程主要受溅射颗粒数与反弹颗粒数比值的控制,预示着风沙流发育过程或湍流波动将会对起跳速度概率分布函数产生重要影响。因此,我们的研究结果提供了关于近床面风沙跃移过程的新认识,并对模拟风沙输运中的粒-床相互作用和地貌动力学模型具有重要意义。

关键词: 起跳速度, 反弹颗粒, 溅射颗粒, 粒-床碰撞过程, 高速摄影技术

Abstract:

The probability distribution function (PDF) of the liftoff velocities of aeolian (wind-blown) sand particles, an important parameter in sediment transport and dust emission models, remains poorly understood due to the challenges in tracking particle dynamics during the liftoff process. To reliably describe this distribution function, measurements of the individual particle trajectories near the sand-bed during sediment transport are required. In this study, we address this issue by employing an improved particle tracking velocimetry technique, enabling us to capture the particle-bed collision process of many liftoff grains in consecutive images and, consequently, to obtain multiple liftoff particle trajectories with different liftoff modes during sand transport in a boundary layer wind tunnel. Subsequently, using the wind tunnel, we measured the trajectory of splash particles, rebound particles that generated no splash particles, and rebound particles that generated only one splash particle near the sand bed. By analyzing the probability distribution of the liftoff velocities of these three liftoff modes, a probability distribution model for the liftoff velocities of particles in a steady-state wind-sand flow was constructed. The results indicate the following: (1) The liftoff angles and speeds of the three liftoff modes all follow a Lognormal probability distribution. (2) The PDF for the liftoff angle of the total liftoff particles is largely unaffected by the liftoff mode. (3) The PDF for the liftoff velocity of the total liftoff particles is mainly controlled by the number of splash particles to that of rebound particles. This indicates that the development process of wind-sand flow or turbulence fluctuations impacts the PDF of liftoff velocity. The different shapes of the probability distribution curve for liftoff velocities may only reflect the specific development of wind-sand flow. Our results offer new insights into the aeolian sand saltation process near the bed surface and are crucial for simulating particle-bed interactions and improving geomorphic dynamics models in aeolian sand transport. Our study on the probability distribution model of liftoff velocity opens a new avenue of investigation in the aeolian and soil sciences and aids the understanding of the dynamics of near-bed particle transport. This transport plays an essential role in aeolian research, as well as in the geomorphodynamics of Earth, Mars, and other celestial bodies within our solar system.

Key words: liftoff velocity, rebound particles, splash particles, particle-bed collision process, high-speed photography