干旱区研究 ›› 2024, Vol. 41 ›› Issue (8): 1300-1308.doi: 10.13866/j.azr.2024.08.04 cstr: 32277.14.j.azr.2024.08.04
张群慧1(), 常亮1,2,3, 顾小凡1,2,3, 王倩1, 马卯楠4, 李小等1, 段瑞1, 犹香智1
收稿日期:
2023-11-18
修回日期:
2024-02-21
出版日期:
2024-08-15
发布日期:
2024-08-22
作者简介:
张群慧(1993-),女,博士,助理研究员,主要从事干旱区气候变化研究. E-mail: qunhui_zhang321@163.com
基金资助:
ZHANG Qunhui1(), CHANG Liang1,2,3, GU Xiaofan1,2,3, WANG Qian1, MA Maonan4, LI Xiaodeng1, DUAN Rui1, YOU Xiangzhi1
Received:
2023-11-18
Revised:
2024-02-21
Published:
2024-08-15
Online:
2024-08-22
摘要:
开展柴达木盆地气候舒适性评价对盆地人居环境、气候宜居资源开发、生态文明建设具有重要意义。本研究基于1979—2020年长时间序列地表气象数据集,利用人体舒适度指数,分析了柴达木盆地年际尺度和季节尺度人体舒适性时空变化特征。结果表明:(1) 全盆地多年平均及不同季节内人体舒适度均处于增加的趋势,除夏季平原区部分区域处于舒适等级,其他均处于冷不舒适的状况;(2) 人体舒适度指数变化与气温的变化具有最强的相关性,相关系数全盆地达到0.9以上,其次为风速和湿度,山区较平原区相关性较弱;(3) 通过变化趋势和Hurst指数综合分析,发现气温和比湿继续增加且具有强持续性,风速继续减小且强持续性;人体舒适度指数除秋季山区持续性弱外,其他季节山区和平原区均具有强持续增加的趋势。该研究可为柴达木盆地和高寒地区气候舒适性研究提供一定参考。
张群慧, 常亮, 顾小凡, 王倩, 马卯楠, 李小等, 段瑞, 犹香智. 1979—2020年柴达木盆地人体舒适度指数时空变化及趋势分析[J]. 干旱区研究, 2024, 41(8): 1300-1308.
ZHANG Qunhui, CHANG Liang, GU Xiaofan, WANG Qian, MA Maonan, LI Xiaodeng, DUAN Rui, YOU Xiangzhi. Spatial-temporal variations and trends in the human body comfort index in the Qaidam Basin, China, during 1979-2020[J]. Arid Zone Research, 2024, 41(8): 1300-1308.
表3
气温、风速、比湿和人体舒适度指数的Hurst指数"
Hurst 指数 | 气温 | 风速 | 比湿 | 人体舒适度指数 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
全盆地 | 山区 | 平原 | 全盆地 | 山区 | 平原 | 全盆地 | 山区 | 平原 | 全盆地 | 山区 | 平原 | ||||
春季 | 0.87 | 0.87 | 0.89 | 1 | 1 | 1 | 0.86 | 0.87 | 0.86 | 0.82 | 0.81 | 0.84 | |||
夏季 | 0.81 | 0.78 | 0.82 | 1 | 1 | 1 | 0.81 | 0.79 | 0.82 | 0.81 | 0.78 | 0.85 | |||
秋季 | 0.71 | 0.67 | 0.77 | 1 | 1 | 1 | 0.83 | 0.83 | 0.84 | 0.62 | 0.61 | 0.72 | |||
冬季 | 0.8 | 0.8 | 0.82 | 1 | 1 | 1 | 0.91 | 0.91 | 0.9 | 0.78 | 0.81 | 0.77 | |||
年平均 | 0.82 | 0.8 | 0.84 | 1 | 1 | 1 | 0.92 | 0.93 | 0.92 | 0.79 | 0.77 | 0.86 |
[1] | IPCC. Climate change 2021: The physical science basis[C]// LeeJ Y, MarotzkeJ, BalaG, et al. Future Global Climate:Scenario-42 Based Projections and Near-term Information. Cambridge: Cambridge University Press, 2021: 1-195. |
[2] | 周天军, 陈梓明, 陈晓龙, 等. IPCC AR6 报告解读:未来的全球气候——基于情景的预估和近期信息[J]. 气候变化研究进展, 2021, 17(6): 652-663. |
[ Zhou Tianjun, Chen Ziming, Chen Xiaolong, et al. Interpreting IPCC AR6: Future global climate based on projection under scenarios and on near-term information[J]. Climate Change Research, 2021, 17(6): 652-663. ] | |
[3] | 姜彤, 翟建青, 罗勇, 等. 气候变化影响适应和脆弱性评估报告进展: IPCC AR5到AR6的新认知[J]. 大气科学学报, 2022, 45(4): 502-511. |
[ Jiang Tong, Zhai Jianqing, Luo Yong, et al. Understandings of assessment reports on climate change impacts, adaptation and vulnerability: Progress from IPCC AR5 to IPCC AR6[J]. Transactions of Atmospheric Sciences, 2022, 45(4): 502-511. ] | |
[4] |
Liu Y, Cai W, Lin X, et al. Nonlinear El Niño impacts on the global economy under climate change[J]. Nature Communications, 2023, 14: 5887.
doi: 10.1038/s41467-023-41551-9 pmid: 37735448 |
[5] | 黄存瑞, 刘起勇. IPCC AR6报告解读: 气候变化与人类健康[J]. 气候变化研究进展, 2022, 18(4): 442-451. |
[ Huang Cunrui, Liu Qiyong. Interpretation of IPCC AR6 on climate change and human health[J]. Climate Change Research, 2022, 18(4): 442-451. ] | |
[6] | Wang J, Yan Z W. Rapid rises in the magnitude and risk of extreme regional heat wave events in China[J]. Weather and Climate Extremes, 2021, 34: 100379. |
[7] |
Perkins-Kirkpatrick S E, Lewis S C. Increasing trends in regional heatwaves[J]. Nature Communications, 2020, 11: 3357.
doi: 10.1038/s41467-020-16970-7 pmid: 32620857 |
[8] |
de Freitas C R, Grigorieva E A. A comprehensive catalogue and classification of human thermal climate indices[J]. International Journal of Biometeorology, 2015, 59(1): 109-120.
doi: 10.1007/s00484-014-0819-3 pmid: 24682541 |
[9] | Binarti F, Koerniawan M D, Triyadi S, et al. A review of outdoor thermal comfort indices and neutral ranges for hot-humid regions[J]. Urban Climate, 2020, 31: 100531. |
[10] |
Blazejczyk K, Epstein Y, Jendritzky G, et al. Comparison of UTCI to selected thermal indices[J]. International Journal of Biometeorology, 2012, 56: 515-535.
doi: 10.1007/s00484-011-0453-2 pmid: 21614619 |
[11] |
Epstein Y, Moran D S. Thermal comfort and the heat stress indices[J]. Industrial Health, 2006, 44(3): 388-98.
doi: 10.2486/indhealth.44.388 pmid: 16922182 |
[12] |
Jendritzky G, de Dear R, Havenith G. UTCI—why another thermal index?[J]. International Journal of Biometeorology, 2012, 56(3): 421-428.
doi: 10.1007/s00484-011-0513-7 pmid: 22187087 |
[13] | 蔚丹丹, 李山, 张粮锋, 等. 旅游气候舒适性评价:模型优化与中国案例[J]. 旅游学刊, 2021, 36(5): 14-28. |
[ Yu Dandan, Li Shan, Zhang Liangfeng, et al. Evaluate tourism climate using modified holiday climate index in China[J]. Tourism Tribune, 2021, 36(5): 14-28. ] | |
[14] | 王国新, 钱莉莉, 陈韬, 等. 旅游环境舒适度评价及其时空分异——以杭州西湖为例[J]. 生态学报, 2015, 35(7): 2206-2216. |
[ Wang Guoxin, Qian Lili, Chen Tao, et al. Evaluation of tourism environmental comfort and its spatial-temporal differentiation: A case study of West Lake in Hangzhou, China[J]. Acta Ecologica Sinica, 2015, 35(7): 2206-2216. ] | |
[15] | 关靖云, 李东, 徐晓亮, 等. 近40年新疆旅游气候舒适期的时空格局及其演变研究[J]. 西南大学学报(自然科学版), 2022, 44(6): 185-197. |
[ Guan Jingyun, Li Dong, Xu Xiaoliang, et al. Spatialtemporal pattern and evolution of tourism climate comfort period in Xinjiang in recent 40 years[J]. Journal of Southwest University (Natural Science Edition), 2022, 44(6): 185-197. ] | |
[16] | 官景得, 王咏青, 孙银川, 等. 近39 a宁夏旅游气候适宜期及变化分析[J]. 干旱区地理, 2020, 43(2): 339-348. |
[ Guan Jingde, Wang Yongqing, Sun Yinchuan, et al. Suitable period and change of tourism climate in Ningxia in the past 39 years[J]. Arid Land Geography, 2020, 43(2): 339-348. ] | |
[17] | 马丽君, 孙根年. 中国西部热点城市旅游气候舒适度[J]. 干旱区地理, 2009, 32(5): 791-797. |
[ Ma Lijun, Sun Gennian. Evaluation of climate comfort index for tourism hot-spot cities in west China[J]. Arid Land Geography, 2009, 32(5): 791-797. ] | |
[18] | Matthews L, Scott D, Andrey J. Development of a data-driven weather index for beach parks tourism[J]. International Journal of Biometeorology, 2021, 65: 749-762. |
[19] | 雷桂莲, 喻迎春, 刘志萍, 等. 南昌市人体舒适度指数预报[J]. 江西气象科技, 1999(3): 40-41. |
[ Lei Guilian, Yu Yingchun, Liu Zhiping, et al. Forecast of human body comfort index in Nanchang[J]. Jiangxi Meteorological Science and Technology, 1999(3): 40-41. ] | |
[20] | 贾传. 基于人体舒适度的近地表城市热岛效应研究[D]. 大连: 辽宁师范大学, 2023. |
[ Jia Chuan. Study on Near Surface Urban Heat Island Effect Based on Human Comfort[D]. Dalian: Liaoning Normal University, 2023. ] | |
[21] | Zheng Z. Characteristics of climate warming and human body comfort index in Beijing during last 50 years[J]. Advanced Materials Research, 2011, 183-185: 1105-1109. |
[22] | 胡琳, 胡淑兰, 苏静, 等. 陕西省人体舒适度变化及其对气象因子的响应[J]. 干旱区研究, 2019, 36(6): 1450-1456. |
[ Hu Lin, Hu Shulan, Su Jing, et al. Variation of comfort index of human body and its response to meteorological factors in Shaanxi Province[J]. Arid Zone Research, 2019, 36(6): 1450-1456. ] | |
[23] | 高理, 刘焕彬. 1991—2021年山东省人体舒适度时空分布特征[J]. 海洋气象学报, 2023, 43(3): 71-79. |
[ Gao Li, Liu Huanbin. Spatial and temporal distribution of body comfort index in Shandong Province from 1991 to 2021[J]. Journal of Marine Meteorology, 2023, 43(3): 71-79. ] | |
[24] | 曹永强, 赵慧, 李可欣, 等. 辽宁省气候舒适度变化及其对气象因子的响应[J]. 人民珠江, 2022, 43(8): 47-53. |
[ Cao Yongqiang, Zhao Hui, Li Kexin, et al. Climate comfort changes and its response to meteorological factors in Liaoning Province[J]. Pearl River, 2022, 43(8): 47-53. ] | |
[25] | 黄鹤楼, 邹旭恺, 丁烨毅, 等. 气候变化对宁波四明山人体舒适度的影响[J]. 气候变化研究进展, 2020, 16(3): 316-324. |
[ Huang Helou, Zou Xukai, Ding Yeyi, et al. The impact of climate change on human comfort in the Siming Mountains in Ningbo, China[J]. Climate Change Research, 2020, 16(3): 316-324. ] | |
[26] | 金满慧, 王兴丽, 张东琴, 等. 气候变暖背景下甘南高原人体舒适度时空分布特征[J]. 农业灾害研究, 2022, 12(6): 83-85. |
[ Jin Manhui, Wang Xingli, Zhang Dongqin, et al. Temporal and spatial distribution characteristics of human comfort in Gannan Plateau under the background of climate warming[J]. Agricultural Disaster Research, 2022, 12(6): 83-85. ] | |
[27] | 蔡嘉仪, 李长顺, 杨晓燕, 等. 福建省避暑旅游气候条件及适宜性分析[J]. 海峡科学, 2022(7): 14-19. |
[ Cai Jiayi, Li Changshun, Yang Xiaoyan, et al. Analysis of climatic conditions and suitability of summer tourism in Fujian Province[J]. Strait Science, 2022(7): 14-19. ] | |
[28] | 范琳, 刘楠, 赵力, 等. 荒漠类型自然保护区空间布局及区划[J]. 中国水土保持科学, 2023, 21(6): 80-92. |
[ Fan Lin, Liu Nan, Zhao Li, et al. Spatial layout and regionalization of desert nature reserves[J]. Science of Soil and Water Conservation, 2023, 21(6): 80-92. ] | |
[29] |
屈欣, 郜学敏, 王萌, 等. 柴达木盆地地质遗迹资源评价[J]. 中国沙漠, 2022, 42(1): 167-174.
doi: 10.7522/j.issn.1000-694X.2021.00156 |
[ Qu Xin, Gao Xuemin, Wang Meng, et al. Evaluation on the geological heritage resources of the Qaidam Basin, China[J]. Journal of Desert Research, 2022, 42(1): 167-174. ]
doi: 10.7522/j.issn.1000-694X.2021.00156 |
|
[30] | 阳坤, 姜尧志, 唐文君, 等. 第三极地区长时间序列高分辨率地面气象要素驱动数据集(TPMFD, 1979-2022)[DB/OL]. 国家青藏高原数据中心, 2022. |
[ Yang Kun, Jiang Yaozhi, Tang Wenjun, et al. A high-resolution near-surface meteorological forcing dataset for the Third Pole region (TPMFD, 1979-2022)[DB/OL]. National Tibetan Plateau / Third Pole Environment Data Center, 2022. ] | |
[31] | 叶汀, 杨汉波, 霍军军. 西藏主要流域年径流的变化趋势及其原因[J]. 水力发电学报, 2023, 42(9): 46-57. |
[ Ye Ting, Yang Hanbo, Huo Junjun. Change trends of runoff in major river basins in Tibetan Autonomous Region and their causes[J]. Journal of Hydroelectric Engineering, 2023, 42(9): 46-57. ] | |
[32] | 佘王康, 杨勤丽, 阳坤, 等. 青藏高原雪水比例时空变化特征[J]. 水科学进展, 2024, 35(2): 348-356. |
[ She Wangkang, Yang Qinli, Yang Kun, et al. Spatiotemporal variation characteristics of snowfall-precipitation ratio on the Qinghai-Tibet Plateau[J]. Advances in Water Science, 2024, 35(2): 348-356. ] | |
[33] | 中国气象局. 气候资源评价气候宜居城镇: QX/T570-2020[S]. 北京: 气象出版社, 2020. |
[ China Meteorological Administration. Climate Resource Assessment-Climate Livable Cities:QX/T570-2020[S]. Beijing: China Meteorological Press, 2020. ] | |
[34] | Hurst H E. Long-term storage capacity of reservoirs[J]. Transactions of the American Society of Civil Engineers, 1951, 116(1): 770-799. |
[35] | 张钦, 唐海萍, 崔凤琪, 等. 基于标准化降水蒸散指数的呼伦贝尔草原干旱变化特征及趋势分析[J]. 生态学报, 2019, 39(19): 7110-7123. |
[ Zhang Qin, Tang Haiping, Cui Fengqi, et al. SPEI-based analysis of drought characteristics and trends in Hulun Buir grassland[J]. Acta Ecologica Sinica, 2019, 39(19): 7110-7123. ] | |
[36] |
张志强, 刘欢, 左其亭, 等. 2000—2019年黄河流域植被覆盖度时空变化[J]. 资源科学, 2021, 43(4): 849-858.
doi: 10.18402/resci.2021.04.18 |
[ Zhang Zhiqiang, Liu Huan, Zuo Qiting, et al. Spatiotemporal change of fractional vegetation cover in the Yellow River Basin during 2000-2019[J]. Resources Science, 2021, 43(4): 849-858. ]
doi: 10.18402/resci.2021.04.18 |
|
[37] |
刘婷婷, 朱秀芳, 孙劭, 等. 阈值选择对高温时空变化特征的影响[J]. 地理科学, 2023, 43(4): 726-736.
doi: 10.13249/j.cnki.sgs.2023.04.016 |
[ Liu Tingting, Zhu Xiufang, Sun Shao, et al. Impact of threshold selection on the spatiotemporal change characteristics of high temperature[J]. Scientia Geographica Sinica, 2023, 43(4): 726-736. ]
doi: 10.13249/j.cnki.sgs.2023.04.016 |
|
[38] | 雷杨娜, 张侠, 赵晓萌. 1971—2018年陕西省人体舒适度时空分布特征研究[J]. 干旱区地理, 2020, 43(6): 1417-1425. |
[ Lei Yangna, Zhang Xia, Zhao Xiaomeng. Spatial-temporal distribution characteristics of comfort index of human body in Shaanxi Province from 1971 to 2018[J]. Arid Land Geography, 2020, 43(6): 1417-1425. ] | |
[39] |
郭广, 张静, 马守存, 等. 1961—2010 年青海省人体舒适度指数时空分布特征[J]. 冰川冻土, 2015, 37(3): 845-854.
doi: 10.7522/j.issn.1000-0240.2015.0094 |
[ Guo Guang, Zhang Jing, Ma Shoucun, et al. Spatial-temporal distribution characteristics analysis of comfort of human body index in Qinghai Province from 1961 to 2010[J]. Journal of Glaciology and Geocryology, 2015, 37(3): 845-854. ]
doi: 10.7522/j.issn.1000-0240.2015.0094 |
|
[40] | 张红丽, 韩富强, 张良, 等. 西北地区气候暖湿化空间与季节差异分析[J]. 干旱区研究, 2023, 40(4): 517-531. |
[ Zhang Hongli, Han Fuqiang, Zhang Liang, et al. Analysis of spatial and seasonal variations in climate warming and humidification in Northwest China[J]. Arid Zone Research, 2023, 40(4): 517-531. ] |
[1] | 张彬, 郑新军, 王玉刚, 唐立松, 李彦, 杜澜, 田胜川. 1990—2022年天山北坡地区不同开垦年限耕层土壤盐分变化[J]. 干旱区研究, 2024, 41(9): 1435-1445. |
[2] | 孙琳琳, 刘琼, 黄观, 陈勇航, 魏鑫, 郭玉琳, 张太西, 高天一, 许赟红. 新疆和周边“一带一路”地区不同云天条件下地表太阳辐射[J]. 干旱区研究, 2024, 41(9): 1480-1490. |
[3] | 袁征, 张志高, 闫瑾, 刘嘉毅, 胡柱钰, 王赟, 蔡茂堂. 1960—2020年黄河流域不同等级降水时空特征[J]. 干旱区研究, 2024, 41(8): 1259-1271. |
[4] | 蔡玉琴, 祁栋林, 王烈福, 李海凤, 张德琴. 青海省不同等级寒冷日数时空演变特征[J]. 干旱区研究, 2024, 41(5): 742-752. |
[5] | 裴志林, 曹晓娟, 王冬, 李迪, 王鑫, 白艾原. 内蒙古植被覆盖时空变化特征及其对人类活动的响应[J]. 干旱区研究, 2024, 41(4): 629-638. |
[6] | 赵东颖, 蒙仲举, 孟芮冰, 马泽. 乌兰布和沙漠风沙入黄段植被覆盖动态变化特征及驱动力[J]. 干旱区研究, 2024, 41(4): 639-649. |
[7] | 周义, 索文姣. 基于CWSI的汾河流域干旱时空变化特征[J]. 干旱区研究, 2024, 41(2): 191-199. |
[8] | 刘一丹, 姚晓军, 李宗省, 胡家瑜. 气候变化和土地利用覆盖变化对河西地区植被净初级生产力的影响[J]. 干旱区研究, 2024, 41(1): 169-180. |
[9] | 文妙霞, 何学高, 刘欢, 张婧, 罗晨, 贾丰铭, 王义贵, 胡云云. 基于地理探测器的宁夏草地植被覆被时空分异及驱动因子[J]. 干旱区研究, 2023, 40(8): 1322-1332. |
[10] | 李虹, 李忠勤, 陈普晨, 彭加加. 近20 a新疆阿尔泰山积雪时空变化及其影响因素[J]. 干旱区研究, 2023, 40(7): 1040-1051. |
[11] | 王士维, 孙栋元, 周敏, 王亦可, 王祥镔, 季宗虎, 张文睿, 武兰珍. 1951—2020年疏勒河流域气温时空变化特征[J]. 干旱区研究, 2023, 40(7): 1065-1074. |
[12] | 赵卓怡, 郝兴明. 基于Priestley-Taylor方法的中亚干旱区实际蒸散特征及归因[J]. 干旱区研究, 2023, 40(7): 1085-1093. |
[13] | 薛一波, 张小啸, 雷加强, 李生宇, 王永东, 尤源. 北非埃及地区风蚀沙尘时空变化研究[J]. 干旱区研究, 2023, 40(6): 896-904. |
[14] | 任丽雯, 王兴涛, 刘明春, 王大为. 石羊河流域植被净初级生产力时空变化及驱动因素[J]. 干旱区研究, 2023, 40(5): 818-828. |
[15] | 李鑫磊, 李瑞平, 王秀青, 王思楠, 王成坤. 基于地理探测器的河套灌区林草植被覆盖度时空变化与驱动力分析[J]. 干旱区研究, 2023, 40(4): 623-635. |
|