干旱区研究 ›› 2023, Vol. 40 ›› Issue (3): 436-444.doi: 10.13866/j.azr.2023.03.10 cstr: 32277.14.j.azr.2023.03.10
田胜川1,2,3(),赵善超4,郑新军1,2,3(),王玉刚1,2,李彦1,2
收稿日期:
2022-09-15
修回日期:
2022-11-09
出版日期:
2023-03-15
发布日期:
2023-03-31
作者简介:
田胜川(1997-),男,硕士研究生,主要从事植物水分关系研究. E-mail: 基金资助:
TIAN Shengchuan1,2,3(),ZHAO Shanchao4,ZHENG Xinjun1,2,3(),WANG Yugang1,2,LI Yan1,2
Received:
2022-09-15
Revised:
2022-11-09
Published:
2023-03-15
Online:
2023-03-31
摘要:
森林生态系统在全球陆地水循环过程中扮演重要的角色,在保护水资源方面有关键作用。雪岭云杉(Picea schrenkiana)是我国天山森林生态系统的建群种,雪岭云杉的水分来源研究有助于理解植物对干旱区山地环境的适应。采用氧稳定同位素和IsoSource混合模型估算2200 m、1800 m和1450 m 3个海拔雪岭云杉生长季(4—9月)的水分来源并分析其动态变化。结果表明:(1) 3个海拔土壤水的18O在4月贫化,5—9月富集,1450 m海拔茎秆水δ18O值在月份之间变化幅度最大,6—9月3个海拔雪岭云杉茎秆水18O逐渐富集;(2) 整个生长季0~0.2 m土壤水为3个海拔雪岭云杉贡献一半以上的水源,表层土壤水平均贡献率从高海拔到低海拔依次为61.37%、51.35%和58.42%,在5—6月雪岭云杉倾向平均利用各层土壤水,雪岭云杉生长季的水分吸收层没有明显地转移。雪岭云杉主要吸收0~0.2 m土壤水,在发生降雨时可以快速吸收水分,改善水文状况,减小极端降雨的危害,因此,加强雪岭云杉林的保护与抚育管理,可以有效提高了森林水源涵养能力,充分发挥其生态效益。
田胜川, 赵善超, 郑新军, 王玉刚, 李彦. 天山不同海拔雪岭云杉生长季水分来源[J]. 干旱区研究, 2023, 40(3): 436-444.
TIAN Shengchuan, ZHAO Shanchao, ZHENG Xinjun, WANG Yugang, LI Yan. Water source of spruce (Picea schrenkiana) at different altitudes in the Tianshan Mountains during the growing season[J]. Arid Zone Research, 2023, 40(3): 436-444.
表2
SWC、土壤水δ18O值和植物水δ18O值的因子差异贡献"
因子 | SWC | 土壤水δ18O值 | 植物水δ18O值 | |||||
---|---|---|---|---|---|---|---|---|
F值 | 变异贡献率/% | F值 | 变异贡献率/% | F值 | 变异贡献率/% | |||
月份 | 12.25** | 13.59 | 54.95** | 35.28 | 44.32** | 56.67 | ||
海拔 | 17.94** | 7.96 | 13.59** | 3.49 | 5.18** | 2.60 | ||
土层 | 35.02** | 15.54 | 5.63** | 1.45 | - | - | ||
月份×海拔 | 6.13** | 13.61 | 18.87** | 24.23 | 11.21** | 28.16 | ||
月份×土层 | 2.02* | 4.48 | 6.49** | 8.34 | - | - | ||
海拔×土层 | 6.26** | 5.56 | 2.26 | 1.16 | - | - | ||
月份×海拔×土层 | 0.75 | 3.33 | 2.04** | 5.25 | - | - |
表3
生长季雪岭云杉植物水分来源统计"
海拔/m | 土层深度/m | 月份 | |||||
---|---|---|---|---|---|---|---|
4月 | 5月 | 6月 | 7月 | 8月 | 9月 | ||
2200 | 0~0.2 | 49.0 | 54.8 | 38.1 | 67.1 | 61.3 | 97.9 |
0.2~0.4 | 32.9 | 28.1 | 46.7 | 17.8 | 29.6 | 1.3 | |
>0.4 | 18.1 | 17.1 | 15.2 | 15.1 | 9.0 | 0.9 | |
1800 | 0~0.2 | 47.5 | 29.5 | 43.7 | 65.9 | 71.4 | 50.1 |
0.2~0.4 | 29.9 | 37.4 | 38.1 | 15.7 | 15.7 | 28.3 | |
>0.4 | 22.6 | 33.1 | 18.2 | 18.4 | 12.8 | 21.6 | |
1450 | 0~0.2 | 89.0 | 42.2 | 29.4 | 47.2 | 45.8 | 96.9 |
0.2~0.4 | 5.3 | 34.4 | 36.4 | 26.4 | 39.2 | 1.8 | |
> 0.4 | 5.7 | 23.4 | 34.2 | 26.4 | 15.0 | 1.3 |
[1] |
Bonan G B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests[J]. Science, 2008, 320(5882): 1444-1449.
doi: 10.1126/science.1155121 pmid: 18556546 |
[2] | Watson J E M, Evans T, Venter O, et al. The exceptional value of intact forest ecosystems[J]. Nature Ecology & Evolution, 2018, 2(4): 599-610. |
[3] |
Rugenstein J K C, Chamberlain C P. The evolution of hydroclimate in Asia over the Cenozoic: A stable-isotope perspective[J]. Earth-Science Reviews, 2018, 185: 1129-1156.
doi: 10.1016/j.earscirev.2018.09.003 |
[4] |
Baldwin J, Vecchi G. Influence of the TianShan on arid extratropical asia[J]. Journal of Climate, 2016, 29(16): 5741-5762.
doi: 10.1175/JCLI-D-15-0490.1 |
[5] | 乔郭亮, 金晓斌, 顾铮鸣, 等. 2000—2018年天山中段高海拔草地暖季承载力[J]. 农业工程学报, 2021, 37(22): 253-261, 309. |
[Qiao Guoliang, Jin Xiaobin, Gu Zhengming, et al. Carrying capacity of high-altitude grassland in warm seasons in the middle section of Tianshan Mountion from 2000 to 2018[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(22): 253-261, 309.] | |
[6] | 马静, 姚娟. 世界自然遗产地少数民族牧民生态补偿问题探索——以新疆天山天池为例[J]. 旅游研究, 2016, 8(2): 52-57. |
[Ma Jing, Yao Juan. Ecological compensation problem research on the minority herdsmen in the world natural heritage site: Taking Tianchi in Tianshan of Xinjiang,the world heritage site as an example[J]. Tourism Research, 2016, 8(2): 52-57.] | |
[7] | 王国庆. 天山国有林保护中心天保二期工程建设实践和需要解决的问题[J]. 新疆林业, 2020, 273(5): 42-44. |
[Wang Guoqing. Tianshan state forest protection center Tianbao II Project construction practices and problems to be solved[J]. Forestry of Xinjiang, 2020, 273(5): 42-44.] | |
[8] |
Clark J S, Iverson L, Woodall C W, et al. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States[J]. Global Change Biology, 2016, 22(7): 2329-2352.
doi: 10.1111/gcb.13160 pmid: 26898361 |
[9] |
Anderegg W R L, Kane J M, Anderegg L D L. Consequences of widespread tree mortality triggered by drought and temperature stress[J]. Nature Climate Change, 2013, 3(1): 30-36.
doi: 10.1038/nclimate1635 |
[10] | 陈曦, 许文强, 罗格平, 等. 天山北坡不同环境条件下雪岭云杉(Picea schrenkiana)林限土壤属性[J]. 生态学报, 2008, 28(1): 53-61. |
[Chen Xi, Xu Wenqiang, Luo Geping, et al. Soil properties at the tree limits of Picea schrenkiana forests in response to varying environmental conditions on the northern slope of Tianshan mountains[J]. Acta Ecologica Sinica, 2008, 28(1): 53-61.] | |
[11] | 赵传燕, 别强, 彭焕华. 祁连山北坡青海云杉林生境特征分析[J]. 地理学报, 2010, 65(1): 113-121. |
[Zhao Chuanyan, Bie Qiang, Peng Huanhua. Analysis of the niche space of Picea crassifolia on the northern slope of Qilian Mountains[J]. Acta Geographica Sinica, 2010, 65(1): 113-121.] | |
[12] | 丁程锋, 张绘芳, 李霞, 等. 天山中部云杉天然林水源涵养功能定量评估——以乌鲁木齐河流域为例[J]. 生态学报, 2017, 37(11): 3733-3743. |
[Ding Chengfeng, Zhang Huifang, Li Xia, et al. Quantitative assessment of water conservation function of the natural spruce forest in the central Tianshan Mountains: A case study of the Urumqi River Basin[J]. Acta Ecologica Sinica, 2017, 37(11): 3733-3743.] | |
[13] |
Wang T, Liang Y, Ren H B, et al. Age structure of Picea schrenkiana forest along an altitudinal gradient in the central Tianshan Mountains, northwestern China[J]. Forest Ecology and Management, 2004, 196(2-3): 267-274.
doi: 10.1016/j.foreco.2004.02.063 |
[14] |
Zhou H, Chen Y, Zhu C, et al. Warming increases the carbon sequestration capacity of Picea schrenkiana in the Tianshan Mountains, China[J]. Forests, 2021, 12(8): 1066.
doi: 10.3390/f12081066 |
[15] |
Zhang Y, Kong Z C, Yan S, et al. Fluctuation of Picea timberline and paleo-environment on the northern slope of Tianshan Mountains during the late Holocene[J]. Chinese Science Bulletin, 2006, 51(14): 1747-1756.
doi: 10.1007/s11434-006-2029-9 |
[16] |
席本野, 邸楠, 曹治国, 等. 树木吸收利用深层土壤水的特征与机制:对人工林培育的启示[J]. 植物生态学报, 2018, 42(9): 885-905.
doi: 10.17521/cjpe.2018.0083 |
[Xi Benye, Di Nan, Cao Zhiguo, et al. Characteristics and underlying mechanisms of plant deep soil water uptake and utilization: Implication for the cultivation of plantation trees[J]. Chinese Journal of Plant Ecology, 2018, 42(9): 885-905.]
doi: 10.17521/cjpe.2018.0083 |
|
[17] | 张慧文, 马剑英, 孙伟, 等. 不同海拔天山云杉叶功能性状及其与土壤因子的关系[J]. 生态学报, 2010, 30(21): 5747-5758. |
[Zhang Huiwen, Ma Jianying, Sun Wei, et al. Altitudinal variation in functional traits of Picea schrenkiana var. tianschanica and their relationship to soil factors in Tianshan Mountains, Northwest China[J]. Acta Ecologica Sinica, 2010, 30(21): 5747-5758.] | |
[18] | 周霞. 天山北坡中段气候垂直分异研究[J]. 干旱区地理, 1995, 18(2): 52-60. |
[Zhou Xia. Vertical climatic difference in the middle part of northern slope of Tianshan Mountains[J]. Arid Land Geography, 1995, 18(2): 52-60.] | |
[19] | 吴雪. 古尔班通古特沙漠南部两种梭梭属植物分布及其与地下水埋深关系[D]. 北京: 中国科学院大学, 2019. |
[Wu Xue. Distribution of Two Haloxylon Plants and Their Relationship with Groundwater Depth in the Southern Part of the Gurbantunggut Desert[D]. Beijing: University of Chinese Academy of Sciences, 2019.] | |
[20] |
Tyler B Coplen. New guidelines for reporting stable hydrogen, carbon, and oxygen isotope-ratio data[J]. Geochimica et Cosmochimica Acta, 1996, 60(17): 3359-3360.
doi: 10.1016/0016-7037(96)00263-3 |
[21] |
Wu Y, Zhou H, Zheng X J, et al. Seasonal changes in the water use strategies of three co-occurring desert shrubs[J]. Hydrological Processes, 2014, 28(26): 6265-6275.
doi: 10.1002/hyp.v28.26 |
[22] |
Phillips D L, Gregg J W. Source partitioning using stable isotopes: Coping with too many sources[J]. Oecologia, 2003, 136(2): 261-269.
pmid: 12759813 |
[23] |
Liu Y, Zhu G, Zhang Z, et al. Isotopic differences in soil-plant-atmosphere continuum composition and control factors of different vegetation zones on the northern slope of the Qilian Mountains[J]. Biogeosciences, 2022, 19(3): 877-889.
doi: 10.5194/bg-19-877-2022 |
[24] | Tian L, Yao T, Macclune K, et al. Stable isotopic variations in west China: A consideration of moisture sources[J]. Journal of Geophysical Research-Atmospheres, 2007, 112(D10): D007718. |
[25] |
戴岳, 郑新军, 唐立松, 等. 古尔班通古特沙漠南缘梭梭水分利用动态[J]. 植物生态学报, 2014, 38(11): 1214-1225.
doi: 10.3724/SP.J.1258.2014.00117 |
[Dai Yue, Zheng Xinjun, Tang Lisong, et al. Dynamics of water usage in Haloxylon ammodendron in the southern edge of the Gurbantünggüt Desert[J]. Chinese Journal of Plant Ecology, 2014, 38(11): 1214-1225.]
doi: 10.3724/SP.J.1258.2014.00117 |
|
[26] | 林光辉. 稳定同位素生态学[M]. 北京: 高等教育出版社, 2013. |
[Lin Guanghui. Stable Isotope Ecology[M]. Beijing: Higher Education Press, 2013.] | |
[27] |
Gazis C, Feng X H. A stable isotope study of soil water: Evidence for mixing and preferential flow paths[J]. Geoderma, 2004, 119(1-2): 97-111.
doi: 10.1016/S0016-7061(03)00243-X |
[28] | 谢聪, 赵良菊, 孟飞, 等. 黑河上游森林生态系统植物水分来源[J]. 兰州大学学报(自然科学版), 2020, 56(4): 502-508. |
[Xie Cong, Zhao Liangju, Meng Fei, et al. Water sources of plants in the forest ecosystem in the upper reaches of the Heihe River Basin[J]. Journal of Lanzhou University(Natural Sciences), 2020, 56(4): 502-508.] | |
[29] |
Zhu G F, Wang L, Liu Y W, et al. Snow-melt water: An important water source for Picea crassifolia in Qilian Mountains[J]. Journal of Hydrology, 2022, 613: 128441.
doi: 10.1016/j.jhydrol.2022.128441 |
[30] |
刘小康, 饶志国, 张肖剑, 等. 天山地区大气降水氧同位素的影响因素及其对西风环流变化的指示意义[J]. 地理学报, 2015, 70(1): 97-109.
doi: 10.11821/dlxb201501008 |
[Liu Xiaokang, Rao Zhiguo, Zhang Xiaojian, et al. Variations in the oxygen isotopic composition of precipitation in the Tianshan Mountains region and their significance for the Westerly circulation[J]. Acta Geographica Sinica, 2015, 70(1): 97-109.]
doi: 10.11821/dlxb201501008 |
|
[31] | Zhang Q, Zhang J, Sun G, et al. Research on water-vapor distribution in the air over Qilian Mountains[J]. Acta Meteorologica Sinica, 2008, 22(1): 107-118. |
[32] | 马洪亮, 马燕, 薛福民. 天山天池近49年气候变化特征[J]. 气象科技, 2010, 38(2): 209-213. |
[Ma Hongliang, Ma Yan, Xue Fumin. Variation characteristics of climate change at Tianchi in Tianshan Mountains in recent 49 years[J]. Meteorological Science and Technology, 2010, 38(2): 209-213.] | |
[33] | 李艳忠, 罗格平, 许文强, 等. 天山北坡三工河流域中山带森林发育与气候土壤的关系[J]. 山地学报, 2011, 29(1): 33-42. |
[Li Yanzhong, Luo Geping, Xu Wenqiang, et al. Forest development and their relationships with climatic and soil in the mid-mountain area of Sangong River watershed, northern slope of Tianshan Mountains[J]. Journal of Mountain Science, 2011, 29(1): 33-42.] | |
[34] | 李宝, 常顺利, 孙雪娇, 等. 天山北坡雪岭云杉森林的蒸腾耗水规律[J]. 西部林业科学, 2022, 51(5): 106-112. |
[Li Bao, Chang Shunli, Sun Xuejiao, et al. Transpiration and water consumption patterns of Picea schrenkiana forests in the northern Tianshan[J]. Journal of West China Forestry Science, 2022, 51(5): 106-112.] | |
[35] |
Huo Y X, Gou X H, Liu W H, et al. Climate-growth relationships of Schrenk spruce (Picea schrenkiana) along an altitudinal gradient in the western Tianshan mountains, Northwest China[J]. Trees-Structure and Function, 2017, 31(2): 429-439.
doi: 10.1007/s00468-017-1524-8 |
[36] |
Schenk H J. The shallowest possible water extraction profile: A null model for global root distributions[J]. Vadose Zone Journal, 2008, 7(3): 1119-1124.
doi: 10.2136/vzj2007.0119 |
[37] |
Pierret A, Maeght J L, Clement C, et al. Understanding deep roots and their functions in ecosystems: An advocacy for more unconventional research[J]. Annals of Botany, 2016, 118(4): 621-635.
doi: 10.1093/aob/mcw130 pmid: 27390351 |
[38] | 阿米娜木·艾力, 常顺利, 张毓涛, 等. 天山云杉森林土壤有机碳沿海拔的分布规律及其影响因素[J]. 生态学报, 2014, 34(7): 1626-1634. |
[Aminem Eli, Chang Shunli, Zhang Yutao, et al. Altitudinal distribution rule of Picea schrenkiana forest’s soil organic carbon and its influencing factors[J]. Acta Ecologica Sinica, 2014, 34(7): 1626-1634.] | |
[39] | 宋昕妮, 李路, 常亚鹏, 等. 天山北坡雪岭云杉林叶片-土壤氮磷化学计量特征[J]. 西北农林科技大学学报(自然科学版), 2020, 48(9): 97-104. |
[Song Xinni, Li Lu, Chang Yapeng, et al. Stoichiometric characteristics of nitrogen and phosphorus in leaves and soils of Picea schrenk’s spruce forest on the northern slope of the Tianshan Mountains[J]. Journal of Northwest A & F University(Natural Science Edition), 2020, 48(9): 97-104.] | |
[40] | 郑翔, 刘琦, 曹敏敏, 等. 森林土壤氧化亚氮排放对氮输入的响应研究进展[J]. 土壤学报, 2022, 59(5): 1190-1203. |
[Zheng Xiang, Liu Qi, Cao Minmin, et al. A Review of responses of soil nitrous oxide emissions to nitrogen input in forest ecosystems[J]. Acta Pedologica Sinica, 2022, 59(5): 1190-1203.] | |
[41] | 宋维峰, 陈丽华, 刘秀萍. 林木根系固土的理论基础[J]. 水土保持通报, 2008, 28(6): 180-186. |
[Song Weifeng, Chen Lihua, Liu Xiuping. Review of theories of soil reinforcement by root system in forest[J]. Bulletin of Soil and Water Conservation, 2008, 28(6): 180-186.] |
[1] | 李晗薇, 姚俊强, 容韬, 张天洋, 高雅洁. 塔什库尔干河流域河谷大气降水同位素特征与水汽输送路径[J]. 干旱区研究, 2024, 41(3): 399-410. |
[2] | 范明彦, 田丽慧, 周海. 微地形对高寒固沙植物水分利用特征的影响[J]. 干旱区研究, 2024, 41(1): 60-70. |
[3] | 王娜娜,韩磊,柳利利,彭苓,周鹏,马云蕾,马军. 银川平原夏半年不同等级降雨水汽输送机制[J]. 干旱区研究, 2023, 40(9): 1404-1413. |
[4] | 周小东, 常顺利, 王冠正, 张毓涛, 喻树龙, 张同文. 天山北坡中段雪岭云杉径向生长对气候变化的响应[J]. 干旱区研究, 2023, 40(8): 1215-1228. |
[5] | 庄淏然, 冯克鹏, 许德浩. 蒸散分离的玉米水分利用效率变化及影响因素[J]. 干旱区研究, 2023, 40(7): 1117-1130. |
[6] | 李红梅, 巴贺贾依娜尔·铁木尔别克, 常顺利, 古丽哈娜提·波拉提别克, 张毓涛, 李吉枚. MixSIAR和IsoSource模型对比分析天山北坡不同灌木的夏季水分来源[J]. 干旱区研究, 2023, 40(3): 445-455. |
[7] | 钟晓菲, 张明军, 张宇, 王家鑫, 刘泽琛, 谷来磊. 基于稳定同位素的兰州市南北两山土壤水入渗模式[J]. 干旱区研究, 2023, 40(11): 1744-1753. |
[8] | 王冠正, 常顺利, 王建萍, 张毓涛, 孙雪娇, 李翔. 不同坡向雪岭云杉天然更新影响因素分析[J]. 干旱区研究, 2023, 40(10): 1661-1669. |
[9] | 蒋磊,赵毅,张鹏伟,何亮,摆翔. 基于氢氧稳定同位素特征的潜水蒸发影响程度研究[J]. 干旱区研究, 2022, 39(6): 1793-1800. |
[10] | 雷世军,王圣杰,朱小凡,张明军. 基于蒸发皿实验的大气水汽氢氧稳定同位素模拟[J]. 干旱区研究, 2022, 39(1): 21-29. |
[11] | 田华,辛拓,李金芳,杨嘉懿,谢祖锋. 乌伦古河流域水体水化学与同位素特征及指示意义[J]. 干旱区研究, 2021, 38(6): 1497-1505. |
[12] | 曾康康,杨余辉,胡义成,冯先成. 喀什河流域降水同位素特征及水汽来源分析[J]. 干旱区研究, 2021, 38(5): 1263-1273. |
[13] | 郭鑫,李文宝,孙标. 氢氧稳定同位素对达里湖水体蒸发与补给来源的指示作用[J]. 干旱区研究, 2021, 38(4): 930-938. |
[14] | 李宗英,罗庆辉,许仲林. 西天山雪岭云杉林分密度对森林生物量分配格局和异速生长的影响[J]. 干旱区研究, 2021, 38(2): 545-552. |
[15] | 石仁娜·加汗,张同文,喻树龙,姜盛夏,许仲林. 天山不同海拔雪岭云杉径向生长对气候变化的响应[J]. 干旱区研究, 2021, 38(2): 327-338. |
|