干旱区研究 ›› 2022, Vol. 39 ›› Issue (6): 1996-2008.doi: 10.13866/j.azr.2022.06.29

• 其他 • 上一篇    

内蒙古地表冻融指数动态变化与驱动因素分析

张昊琛1,2(),萨楚拉1,2(),孟凡浩1,2,罗敏1,2,王牧兰1,2,高红豆1,2   

  1. 1.内蒙古师范大学地理科学学院,内蒙古 呼和浩特 010022
    2.内蒙古自治区遥感与地理信息系统重验室,内蒙古 呼和浩特 010022
    3.蒙古科学院地理与地球生态研究所,蒙古 乌兰巴托 15170
  • 收稿日期:2022-04-19 修回日期:2022-07-03 出版日期:2022-11-15 发布日期:2023-01-17
  • 通讯作者: 萨楚拉
  • 作者简介:张昊琛(1996-),男,硕士研究生,主要从事冰冻圈遥感研究. E-mail: 18748311787@163.com
  • 基金资助:
    国家自然科学基金项目(41861014);内蒙古自治区自然科学基金项目(2020BS03042);内蒙古自治区自然科学基金项目(2020BS04009);内蒙古自治区重点研发和成果转化计划项目(2022YFDZ0061)

Dynamic changes and driving factors of the surface freeze-thaw index in Inner Mongolia

ZHANG Haochen1,2(),SA Chula1,2(),MENG Fanhao1,2,LUO Min1,2,WANG Mulan1,2,GAO Hongdou1,2,ADIYA Saruulzaya3   

  1. 1. College of Geographical Sciences, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China
    2. Key Laboratory of Remote Sensing and GIS, Inner Mongolia Autonomous Region, Hohhot 010022, Inner Mongolia, China
    3. Institute of Geography and Earth Ecology, Mongolian Academy of Sciences, Ulaanbaatar 15170, Mongolia
  • Received:2022-04-19 Revised:2022-07-03 Online:2022-11-15 Published:2023-01-17
  • Contact: Chula SA

摘要:

基于内蒙古45个气象站点1980—2019年日均地表温度数据、结合中国第一代全球陆面再分析产品(CRA)数据以及NDVI数据,利用趋势分析法、相关性分析法和灰色关联度,对内蒙古近40 a地表冻融指数时空变化特征及驱动因素进行分析。研究表明:(1) SFI(地表冻结指数)年均值的空间分布特征表现出自西南向东北递增的规律,STI(地表融化指数)则反之,纬度是影响地表冻融指数空间分布的关键因子。研究期间SFI和STI分别呈现出显著下降和上升趋势,多年变化范围分别为956.1~1848.3 ℃·d和3717.6~4442.3 ℃·d,变化率分别为-156.4 ℃·d·(10a)-1和152.4 ℃·d·(10a)-1;与季节冻土区相比,多年冻土区的冻融指数对气候变暖的响应更加敏感。(2) 研究区近40 a土壤表层含水量、降水量、NDVI呈增加趋势,雪深呈减少趋势,但年际变化表现出不同的空间差异性,多年冻土区呈暖干化发展趋势,季节冻土区呈暖湿化发展趋势。(3) 地表冻融指数与影响因素以负相关关系为主,SFI与影响因素在多年冻土区大部呈正相关关系,在季节冻土区大部呈负相关关系,STI则反之。内蒙古地表冻融指数变化受影响因素共同驱动,0.4 m土壤含水量是影响SFI变化的主导因素,NDVI是影响STI变化的主导因素。研究结果可为内蒙古冻土退化、农牧业生产等提供科学的参考。

关键词: 内蒙古, 地表冻融指数, 气候变化, 时空特征, 驱动因素

Abstract:

Using the trend analysis, correlation analysis and gray correlation, the spatial and temporal variation characteristics and driving factors of the surface freezing index (SFI) and surface thawing index (STI) in Inner Mongolia over the past 40 years were analyzed based on the daily average surface temperature data of 45 meteorological stations in Inner Mongolia from 1980 to 2019, combined with China’s first-generation global land surface reanalysis product (CRA) data and the NDVI data. The study shows that the following: (1) the spatial distribution of annual mean values of the SFI had an increasing pattern from southwest to northeast, while the STI had the opposite pattern, and latitude was the key factor affecting the spatial distribution of the SFI and STI. The SFI and STI showed significant decreasing and increasing trends during the study period, with multi-year variations ranging from 956.1 to 1848.3 ℃·d and 3717.6 to 4442.3 ℃·d, respectively, and rates of change of -156.4 ℃·d·(10a)-1 and 152.4 ℃·d·(10a)-1. Compared with the seasonal permafrost zone, the freeze-thaw index in the multi-year permafrost zone was more sensitive to climate warming. (2) The soil SW content, precipitation, and NDVI in the study area showed an increasing trend, and the snow depth showed a decreasing trend over the last 40 years. However, the interannual variation showed different spatial variability, with a warm-dry trend in the multi-year permafrost area and a warm-wet trend in the seasonal permafrost area. The SFI, STI, and influencing factors are mainly negatively correlated. The SFI and the influencing factors were mostly positively correlated in the multi-year permafrost area and mostly negatively correlated in the seasonal permafrost area. The STI was the opposite of the SFI. The change of the SFI and STI in Inner Mongolia was driven by a combination of influencing factors, while 0.4 m of soil water content was the dominant factor affecting the change of the SFI, and NDVI was the dominant factor affecting the change of the STI. The results provide valuable references for permafrost degradation and the production of agriculture and livestock in Inner Mongolia.

Key words: Inner Mongolia, surface freeze-thaw index, climate change, spatio-temporal characteristics, driving factors