干旱区研究 ›› 2025, Vol. 42 ›› Issue (6): 1004-1020.doi: 10.13866/j.azr.2025.06.05 cstr: 32277.14.AZR.20250605

• 水土资源 • 上一篇    下一篇

水资源承载力评价耦合模型的研究进展与干旱区应用

王艺璇1,2(), 邓晓红3, 范慧文青1,2, 韩江哲4, 李宗省1,4()   

  1. 1.中国科学院西北生态环境资源研究院,祁连山同位素生态水文与国家公园观测研究站,干旱区生态安全与可持续发展全国重点实验室,甘肃 兰州 730000
    2.中国科学院大学,北京 100049
    3.兰州大学经济学院,甘肃 兰州 730000
    4.西北师范大学地理与环境科学学院,甘肃 兰州 730070
  • 收稿日期:2025-02-16 修回日期:2025-04-09 出版日期:2025-06-15 发布日期:2025-06-11
  • 通讯作者: 李宗省. E-mail: lizxhhs@163.com
  • 作者简介:王艺璇(1997-),女,博士研究生,主要从事干旱区地理经济研究. E-mail: wyxvv07@163.com
  • 基金资助:
    中国科学院基础与交叉前沿科研先导专项项目(XDB0720303);甘肃省拔尖领军人才项目;中国科学院青年交叉团队项目(JCTD-2022-18);甘肃省科技计划资助-优秀博士生项目(25JRRA533)

Research advances and arid zone applications of coupled models for water resources carrying capacity

WANG Yixuan1,2(), DENG Xiaohong3, FAN Huiwenqing1,2, HAN Jiangzhe4, LI Zongxing1,4()   

  1. 1. State Key Laboratory of Arid Region Ecological Security and Sustainable Development, Qilian Mountains Isotope Ecohydrology and National Park Observation and Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. School of Economics, Lanzhou University, Lanzhou 730000, Gansu, China
    4. College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2025-02-16 Revised:2025-04-09 Published:2025-06-15 Online:2025-06-11

摘要:

随着全球水资源短缺问题的日益加剧,准确评估水资源承载力已成为实现区域可持续水资源管理和应对气候变化挑战的关键。鉴于水资源-生态-社会系统的复杂性,单一评价方法难以全面揭示其多维交互与动态变化过程。本文综述了水资源承载力评价中耦合模型方法的应用现状与研究进展,通过系统分析法、综合评价法以及机器学习等主要评价方法,揭示其在水资源承载力评价中的优势与局限性,并特别探讨了这些方法在干旱区应用时面临的挑战。本文从动态反馈机制、非线性建模能力、数据驱动性以及适用性等方面对不同方法进行了横向对比,分析了各方法在干旱区应用的适用性与局限性,并探讨了耦合模型的可行性,为解决干旱区水资源承载力问题提供了新的思路。未来研究应聚焦于多模型集成与数据驱动优化,以提升模型的泛化能力和适用性,推动水资源管理从静态评价向动态模拟和精准预测转变,为干旱区乃至全球的水资源可持续利用提供科学支持。

关键词: 水资源承载力, 耦合模型, 系统动力学, 机器学习, 干旱区

Abstract:

As the scarcity of global water intensifies, accurate assessments of water resource carrying capacity (WRCC) have become essential for sustainably managing regional water resources and combating the adverse effects of climate change. However, the water resources-ecology-society system is highly complex, involving multidimensional interactions anddynamic internal changes that cannot be fully captured by a single evaluation method. This paper reviews the application status and research progress of coupled-model methods for WRCC evaluation. A systematic comparative analysis reveals the strengths and limitations of the major evaluation methods—systems analysis, comprehensive evaluation, and machine learning—in WRCC evaluation. Particular attention is devoted to the challenges of these methods in arid regions. The dynamic feedback mechanisms, nonlinear modeling capabilities, data-driven characteristics, and applicabilities of different methods are analyzed through a horizontal comparison study. The review also analyzes the suitabilities and limitations of each method in arid regions and explores the feasibility of coupled models, providing new insights for resolving WRCC issues in these areas. Multimodel integration and data-driven optimization will enhance the generalizability and applicability of models in future, facilitating the transition of water resource management from static evaluation to dynamic simulation and precise prediction. These developments will offer scientific support for sustainable water resource utilization in arid regions and worldwide.

Key words: water resources carrying capacity, coupling model, system dynamics, machine learning, arid regions