[1] |
Liu Y W, Shen X J, Zhang J Q, et al. Temporal and spatial variation in vegetation coverage and its response to climatic change in marshes of Sanjiang Plain, China[J]. Atmosphere, 2022, 13(12): 2077.
|
[2] |
Li M L, Qin Y B, Zhang T B, et al. Climate change and anthropogenic activity Co-Driven vegetation coverage increase in the Three-North Shelter Forest Region of China[J]. Remote Sensing, 2023, 15(6): 1509.
|
[3] |
Xu Y M, Zhuang Q L. The importance of interactions between snow, permafrost and vegetation dynamics in affecting terrestrial carbon balance in circumpolar regions[J]. Environmental Research Letters, 2023, 18(4): 044007.
|
[4] |
Trautmann T, Koirala S, Carvalhais N, et al. The importance of vegetation in understanding terrestrial water storage variations[J]. Hydrology and Earth System Sciences, 2022, 26(4): 1089-1109.
|
[5] |
高瑜莲, 柳锦宝, 柳维扬, 等. 近14 a新疆南疆绿洲地区地表蒸散与干旱的时空变化特征研究[J]. 干旱区地理, 2019, 42(4): 830-837.
|
|
[Gao Yulian, Liu Jinbao, Liu Weiyang, et al. Spatio-temporal variation characteristics of surface evapotranspiration and drought in the oasis area in recent 14 years, the southern Xinjiang[J]. Arid Land Geography, 2019, 42(4): 830-837.]
|
[6] |
Xin Z M, Feng W, Zhan H B, et al. Atmospheric vapor impact on desert vegetation and desert ecohydrological system[J]. Plants, 2023, 12(2): 223.
|
[7] |
Huang K D, Xu C, Qian Z Z, et al. Effects of pruning on vegetation growth and soil properties in poplar plantations[J]. Forests, 2023, 14(3): 501.
|
[8] |
Zhao W J, Zhou C, Zhou C Q, et al. Soil salinity inversion model of oasis in arid area based on UAV multispectral remote sensing[J]. Remote Sensing, 2022, 14(8): 1804.
|
[9] |
Chen Y W, Du Y Y, Yin H Y, et al. Radar remote sensing-based inversion model of soil salt content at different depths under vegetation[J]. PeerJ, 2022, 10: e13306.
|
[10] |
康满萍, 赵成章, 白雪, 等. 苏干湖湿地植被覆盖度时空变化格局[J]. 生态学报, 2020, 40(9): 2975-2984.
|
|
[Kang Manping, Zhao Chengzhang, Bai Xue, et al. The temporal and spatial variation pattern of vegetation coverage in Suganhu wetland[J]. Acta Ecologica Sinica, 2020, 40(9): 2975-2984.]
|
[11] |
Tang K S, Wulan T Y, Wu Z F, et al. Correlation between vegetation coverage and thickness of chestnut soil layer in typical grassland based on multisource satellite remote sensing[J]. Mobile Information Systems, 2022, 2022: 1116781.
|
[12] |
Wang F, Chen Y N, Li Z, et al. Assessment of the irrigation water requirement and water supply risk in the Tarim river Basin, Northwest China[J]. Sustainability, 2019, 11(18): 4941.
|
[13] |
江红南. 新疆不同区域土壤盐渍化光学遥感定量监测研究[D]. 武汉: 武汉大学, 2018.
|
|
[Jiang Hongnan. Quantitative Monitoring on Soil Salinization Utilizing Optical Remote Sensing in Different Regions of Xinjiang, China[D]. Wuhan: Wuhan University, 2018.]
|
[14] |
何宝忠, 丁建丽, 刘博华, 等. 渭库绿洲土壤盐渍化时空变化特征[J]. 林业科学, 2019, 55(9): 185-196.
|
|
[He Baozhong, Ding Jianli, Liu Bohua, et al. Spatiotemporal variation of soil salinization in Weigan-Kuqa River Delta Oasis[J]. Scientia Silvae Sinicae, 2019, 55(9): 185-196.]
|
[15] |
Guo B, Han F, Jiang L. An improved dimidiated pixel model for vegetation fraction in the Yarlung Zangbo River Basin of Qinghai-Tibet Plateau[J]. Journal of the Indian Society of Remote Sensing, 2018, 46(2): 219-231.
|
[16] |
Yan K, Gao S, Chi H, et al. Evaluation of the vegetation-index-based dimidiate pixel model for fractional vegetation cover estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-14.
|
[17] |
李苗苗. 植被覆盖度的遥感估算方法研究[D]. 北京: 中国科学院研究生院(遥感应用研究所), 2003.
|
|
[Li Miaomiao. The Method of Vegetation Fraction Estimation by Remote Sensing[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2003.]
|
[18] |
边慧芹. 渭干河-库车河三角洲绿洲植被覆盖度与土壤盐渍化响应关系研究[D]. 乌鲁木齐: 新疆师范大学, 2020.
|
|
[Bian Huiqin. Study on the Relationship Between Vegetation Coverage and Soil Salinization Response in Weigan-Kuche River Delta Oasis in Xinjiang, China[D]. Urumqi: Xinjiang Normal University, 2020.]
|
[19] |
温忠麟, 叶宝娟. 中介效应分析: 方法和模型发展[J]. 心理科学进展, 2014, 22(5): 731-745.
doi: 10.3724/SP.J.1042.2014.00731
|
|
[Wen Zhonglin, Ye Baojuan. Analyses of mediating effects: The development of methods and models[J]. Advances in Psychological Science, 2014, 22(5): 731-745.]
doi: 10.3724/SP.J.1042.2014.00731
|
[20] |
Howard J H, Baldwin R F, Brown B L. Exploratory analysis for complex-life-cycle amphibians: Revealing complex forest-reproductive effort relationships using redundancy analysis[J]. Forest Ecology and Management, 2012, 270: 175-182.
|