干旱区研究 ›› 2024, Vol. 41 ›› Issue (3): 456-466.doi: 10.13866/j.azr.2024.03.10 cstr: 32277.14.j.azr.2024.03.10
王勃1(), 张建军1,2(), 赖宗锐1, 赵炯昌1, 胡亚伟1, 杨周1, 李阳1, 卫朝阳1
收稿日期:
2023-09-11
修回日期:
2023-11-30
出版日期:
2024-03-15
发布日期:
2024-04-01
通讯作者:
张建军. E-mail: zhangjianjun@bjfu.edu.cn作者简介:
王勃(1996-),男,硕士研究生,主要研究方向为林业生态工程. E-mail: wangbo96824@163.com
基金资助:
WANG Bo1(), ZHANG Jianjun1,2(), LAI Zongrui1, ZHAO Jiongchang1, HU Yawei1, YANG Zhou1, LI Yang1, WEI Zhaoyang1
Received:
2023-09-11
Revised:
2023-11-30
Published:
2024-03-15
Online:
2024-04-01
摘要:
根系是评价植被生态服务功能的关键基础要素,但快速、精确、无损确定根系的测量技术和方法是目前生态系统评估中的瓶颈。探地雷达是一种高效无损的地球物理学技术,可以在无损状态下获取土壤中的根系信息。但是探地雷达检测和识别根系的精度受土壤含水量、根系含水量、根径大小、根系埋藏深度等诸多因素影响,导致其在野外根系探测中适用性受限,为了探究土壤含水量对探地雷达探测根系精度的影响,本研究采用野外预埋根系的控制实验,根据探地雷达波速、振幅和根点反射系数的变化,分析了不同土壤含水量条件下根点识别率及根点距离均方根误差。结果表明:(1) 根系探测中,探地雷达波速和振幅是判断土壤含水量变化的重要参数;(2) 随着土壤含水量的增大,探地雷达波速减小,雷达振幅趋于平缓;(3) 不同土层深度上随着根系直径的增大,探地雷达波速增大,雷达振幅趋于激烈;(4) 根点识别率与土壤含水量成负相关(P<0.05),土壤含水量为15%~25%时探地雷达对活根的识别效果最佳。本研究表明探地雷达可以作为植物根系生物量无损和快速测定、评估的方法,但在利用探地雷达测定土壤中根系时,应在土壤含水量相对较低的时间段进行。
王勃, 张建军, 赖宗锐, 赵炯昌, 胡亚伟, 杨周, 李阳, 卫朝阳. 土壤含水量对探地雷达探测植物根系构型精度的影响[J]. 干旱区研究, 2024, 41(3): 456-466.
WANG Bo, ZHANG Jianjun, LAI Zongrui, ZHAO Jiongchang, HU Yawei, YANG Zhou, LI Yang, WEI Zhaoyang. Effect of soil moisture content on the accuracy of root configuration detection by ground penetrating radar[J]. Arid Zone Research, 2024, 41(3): 456-466.
表1
土壤体积含水量"
探测时间/年-月-日 | 天气 | 平均雷达波速/(m·ns-1) | 土壤体积含水量/% | 平均土壤体含水量/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0~10 cm | 10~20 cm | 20~30 cm | 0~10 cm | 10~20 cm | 20~30 cm | 0~30 cm | ||||
2023-02-24 | 晴 | 0.036 | 0.058 | 0.081 | 42.296 | 35.100 | 34.481 | 37.3 | ||
2023-02-27 | 晴 | 0.038 | 0.061 | 0.082 | 27.872 | 30.091 | 29.748 | 29.2 | ||
2023-03-02 | 多云 | 0.041 | 0.066 | 0.085 | 23.617 | 27.288 | 24.969 | 25.3 | ||
2023-03-05 | 晴 | 0.045 | 0.068 | 0.087 | 21.770 | 24.798 | 20.818 | 22.5 | ||
2023-03-08 | 多云 | 0.054 | 0.080 | 0.089 | 12.939 | 14.942 | 18.813 | 15.6 |
[1] | Cox K D, Scherm H, Serman N. Ground-penetrating radar to detect and quantify residual root fragments following peach orchard clearing[J]. Hort Technology, 2005, 15(3): 600-607. |
[2] |
Butnor J R, Doolittle J A, Kress L, et al. Use of ground-penetrating radar to study tree roots in the southeastern United States[J]. Tree physiology, 2001, 21(17): 1269-1278.
doi: 10.1093/treephys/21.17.1269 pmid: 11696414 |
[3] | Amram E, Tom B. PlantRoots: The Hidden Half[M]. Florida: Chemical Rubber Company Press, 2013. |
[4] |
Liu X, Dong X, Leskovar D I. Ground penetrating radar for underground sensing in agriculture: A review[J]. International Agrophysics, 2016, 30(4): 533-543.
doi: 10.1515/intag-2016-0010 |
[5] | 徐煖银, 郭泺, 薛达元, 等. 赣南地区土地利用格局及生态系统服务价值的时空演变[J]. 生态学报, 2019, 39(6): 1969-1978. |
[Xu Xuanyin, Guo Luo, Xue Dayuan, et al. Land use structure and the dynamic evolution of ecosystem service value in Gannan region, China[J]. Acta Ecologica Sinica, 2019, 39(6): 1969-1978.] | |
[6] | 张建亮, 钱者东, 徐网谷, 等. 国家级自然保护区生态系统格局十年变化(2000—2010年)评估[J]. 生态学报, 2017, 37(23): 8067-8076. |
[Zhang Jiangliang, Qian Zhedong, Xu Wanggu, et al. Ecosystem pattern variation from 2000 to 2010 in national nature reserves of China[J]. Acta Ecologica Sinica, 2017, 37(23): 8067-8076.] | |
[7] | 陈万旭, 李江风, 姜卫, 等. 豫西山区土地利用变化对生态服务价值的影响[J]. 水土保持研究, 2018, 25(1): 376-381. |
[Chen Wanxu, Li Jiangfeng, Jiang Wei, et al. Impacts of land use change on ecosystem service values based on RS and GIS in western mountainous area of He’nan Province[J]. Research of Soil and Water Conservation, 2018, 25(1): 376-381.] | |
[8] | Conyers L B, Goodman D. Ground-penetrating radar: An introduction for archaeologists[D]. Washington: Altamira Press, 1997. |
[9] |
Guo L, Chen J, Cui X, et al. Application of ground penetrating radar for coarse root detection and quantification: A review[J]. Plant and Soil, 2013, 362(1-2): 1-23.
doi: 10.1007/s11104-012-1455-5 |
[10] |
Jiri H, Čermák Jan, Šustek Svatopluk. Mapping tree root systems with ground-penetrating radar[J]. Tree Physiology, 1999, 19(2): 125-130.
doi: 10.1093/treephys/19.2.125 pmid: 12651592 |
[11] |
Alani A M, Lantini L. Recent advances in tree root mapping and assessment using non-destructive testing methods: A focus on ground penetrating radar[J]. Surveys in Geophysics, 2020, 41: 605-646.
doi: 10.1007/s10712-019-09548-6 |
[12] |
Xiao L, Li C, Cai Y. Interactions between soil properties and the rhizome-root distribution in a 12-year Moso bamboo reforested region: Combining ground-penetrating radar and soil coring in the field[J]. Science of The Total Environment, 2021, 800: 149467.
doi: 10.1016/j.scitotenv.2021.149467 |
[13] | 赖娜娜, 袁承江, 唐硕, 等. 应用探地雷达探测古树根系分布[J]. 东北林业大学学报, 2011, 39(11): 124-126. |
[Lai Nana, Yuan Chengjiang, Tang Shuo, et al. Application of ground-penetrating radar to detection of root system distribution of a veteran tree[J]. Journal of Northeast Forestry University, 2011, 39(11): 124-126.] | |
[14] | 王泽鹏, 张潇巍, 薛芳秀, 等. 探地雷达树木根系定位与直径估算[J]. 农业工程学报, 2021, 37(8): 160-168. |
[Wang Zepeng, Zhang Xiaowei, Xue Fangxiu, et al. Estimating the location and diameter of tree roots using ground penetrating radar[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(8): 160-168.] | |
[15] | 邱啟璜, 牛健植, 王迪, 等. 基于探地雷达识别林地粗根和石砾[J]. 北京林业大学学报, 2023, 45(7): 99-109. |
[Qiu Qihuang, Niu Jianzhi, Wang Di, et al. Identification of coarse roots and rock fragments in woodland based on ground penetrating radar[J]. Journal of Beijing Forestry University, 2023, 45(7): 99-109.] | |
[16] | 李蒙, 徐金颢, 戴钊, 等. 基于探地雷达途径的小叶杨粗根空间分布特征研究[J]. 西北林学院学报, 2023, 38(6): 89-94. |
[Li Meng, Xu Jinhao, Dai Zhao, et al. Spatial distribution characteristics of the coarse roots of Populus simonii based on ground penetrating radar[J]. Journal of Northwest Forestry University, 2023, 38(6): 89-94.] | |
[17] |
Bi L, Xing L, Liang H, et al. Estimation of coarse root system diameter based on ground-penetrating radar forward modeling[J]. Forests, 2023, 14: 1370.
doi: 10.3390/f14071370 |
[18] |
Sun D, Jiang F, Wu H, et al. Root location and root diameter estimation of trees based on deep learning and ground-penetrating radar[J]. Agronomy, 2023, 13(2): 344.
doi: 10.3390/agronomy13020344 |
[19] |
Dannoura M, Hirano Y, Igarashi T. Detection of Cryptomeria japonica roots with ground penetrating radar[J]. Plant Biosystems, 2008, 142(2): 375-380.
doi: 10.1080/11263500802150951 |
[20] |
Bain J C, Day F P, Butnor J R. Experimental evaluation of several key factors affecting root biomass estimation by 1500 MHz ground-penetrating radar[J]. Remote Sensing, 2017, 9(12): 13-37.
doi: 10.3390/rs9010013 |
[21] | 王思淇, 张建军, 张彦勤, 等. 晋西黄土区不同密度刺槐林下植物群落物种多样性[J]. 干旱区研究, 2023, 40(7): 1141-1151. |
[Wang Siqi, Zhang Jianjun, Zhang Yanqin, et al. Understory plant community diversity of Robinia pseudoacacia plantation with different densities in the loess plateau of western Shanxi Province[J]. Arid Zone Research, 2023, 40(7): 1141-1151.] | |
[22] | 胡亚伟, 孙若修, 申明爽, 等. 晋西黄土区土地利用方式对土壤C: N: P化学计量特征及土壤理化性质的影响[J]. 干旱区研究, 2021, 38(4): 990-999. |
[Hu Yawei, Sun Ruoxiu, Shen Mingshuang, et al. Effects of land use types on the stoichiometric characteristics of soil C: N: P and the physical and chemical properties of soil in western Shanxi Loess Region[J]. Arid Zone Research, 2021, 38(4): 990-999.] | |
[23] | 刘秀萍, 陈丽华, 陈吉虎. 刺槐和油松根系密度分布特征研究[J]. 干旱区研究, 2007, 24(5): 647-651. |
[Liu Xiuping, Chen Lihua, Chen Jihu. Study on the distribution of root density of Robinia pseudoacacia L. and Pinus tabulaeformis Carr[J]. Arid Zone Research, 2007, 24(5): 647-651.] | |
[24] |
崔喜红, 陈晋, 关琳琳. 探地雷达技术在植物根系探测研究中的应用[J]. 地球科学进展, 2009, 24(6): 606-611.
doi: 10.11867/j.issn.1001-8166.2009.06.0606 |
[Cui Xihong, Chen Jin, Guan Linlin. The application of ground penetrating radar to plant root system detection[J]. Advances in Earth Science, 2009, 24(6): 606-611.] | |
[25] | 韩舒. 基于市政道路三维探地雷达检测技术研究[J]. 山西建筑, 2020, 46(13): 106-108. |
[Han Shu. Research on non-destructive testing technology based on municipal roads[J]. Shanxi Architecture, 2020, 46(13): 106-108.] | |
[26] | 游日, 董茂干. 探地雷达的发展与应用[J]. 筑路机械与施工机械化, 2010, 27(5): 20-23, 37. |
[You Ri, Dong Maogan. Development and application of ground penetrating radar[J]. Road Machinery and Construction Mechanization, 2010, 27(5): 20-23, 37.] | |
[27] | 张璐云, 崔喜红, 全振先, 等. 野外自然条件下探地雷达识别植物根系的有效性研究[J]. 地球物理学进展, 2021, 36(6): 2764-2774. |
[Zhang Luyun, Cui Xihong, Quan Zhenxian, et al. Availability of ground penetrating radar in recognizing plant roots in field[J]. Progress in Geophysics, 2021, 36(6): 2764-2774.] | |
[28] |
Ryazantsev P A, Hartemink A E, Bakhmet O N. Delineation and description of soil horizons using ground-penetrating radar for soils under boreal forest in Central Karelia (Russia)[J]. Catena, 2022, 214: 106285.
doi: 10.1016/j.catena.2022.106285 |
[29] | 周岐山, 戴胜生, 袁相权. 浙江山区地质雷达波速分析[J]. 工程勘察, 2014, 42(100): 78-82. |
[Zhou Qishan, Dai Shengsheng, Yuan Xiangquan. GPR wave velocity analysis in the mountainous area of Zhejiang Province[J]. Geotechnical Investigation and Surveying, 2014, 42(100): 78-82.] | |
[30] | 何宏智. 探地雷达在地质灾害及地基稳定性研究中的应用[D]. 昆明: 昆明理工大学, 2019. |
[He Hongzhi. Application of Ground Penetrating Radar in the Study of Geological Disasters and Foundation Stability[D]. Kunming: Kunming University of Science and Technology, 2019.] | |
[31] |
Hirano Y, Dannoura M, Aono K, et al. Limiting factors in the detection of tree roots using ground-penetrating radar[J]. Plant Soil, 2009, 319: 15-24
doi: 10.1007/s11104-008-9845-4 |
[32] | 王齐仁. 隧道地质灾害超前探测方法研究[D]. 湖南: 中南大学, 2008. |
[Wang Qiren. The Study of Advanced Detecting Methods on Tunnel Geological Hazards[D]. Hunan: Central South University, 2008.] | |
[33] |
Cui X, Liu X, Cao X, et al. Pairing dual frequency GPR in summer and winter enhances the detection and map of coarse roots in the semi arid shrubland in China[J]. European Journal of Soil Science, 2020, 71(2): 236-251.
doi: 10.1111/ejss.12858 |
[34] |
De Aguiar G Z, Lins L, de Paulo M F, et al. Dielectric permittivity effects in the detection of tree roots using ground-penetrating radar[J]. Journal of Applied Geophysics, 2021, 193: 104435.
doi: 10.1016/j.jappgeo.2021.104435 |
[35] |
Seyfried D, Schoebel J. Ground penetrating radar for asparagus detection[J]. Journal of Applied Geophysics, 2016, 126: 191-197.
doi: 10.1016/j.jappgeo.2016.01.022 |
[36] |
Tanikawa T, Ikeno H, Dannoura M, et al. Leaf litter thickness but not plant species can affect root detection by ground penetrating radar[J]. Plant and Soil, 2013, 408(1-2), 271-283.
doi: 10.1007/s11104-016-2931-0 |
[37] | 黎蕾, 汤玉喜, 李永进, 等. 基于探地雷达对根系探测的限制性因素研究[J]. 湖南林业科技, 2020, 47(6): 60-67. |
[Li lei, Tang Yuxi, Li Yongjin, et al. Research on limiting factors of root system detection using ground penetrating radar[J]. Hunan Forestry Science and Technology, 2020, 47(6): 60-67.] | |
[38] |
Barton C V M, Montagu K D. Detection of tree roots and determination of root diameters by ground penetrating radar under optimal conditions[J]. Tree Physiology, 2004, 24(12): 1323-1331.
doi: 10.1093/treephys/24.12.1323 pmid: 15465695 |
[39] | 王明凯, 李文彬, 文剑. 基于探地雷达对粗根的识别技术研究[J]. 森林工程, 2020, 36(3): 21-27. |
[Wang Mingkai, Li Wenbin, Wen Jian. Study on recognition technology of coarse roots using ground-penetrating radar[J]. Forestry Engineering, 2020, 36(3): 21-27.] |
[1] | 刘艺伟, 魏江生, 黄利东, 赵鹏武, 舒洋, 李慧敏, 曹立春, 张婷. 大兴安岭南段蒙古栎粗根非结构性碳对不同坡向的响应[J]. 干旱区研究, 2024, 41(9): 1572-1582. |
[2] | 万佳怡, 矢佳昱, 张华敏, 李兰晖, 丁明军. 三江源区不同覆被类型高寒草甸土壤水分变化特征[J]. 干旱区研究, 2024, 41(8): 1343-1353. |
[3] | 郑柳娜, 江红南, 孙梦婷. 基于遥感影像的新疆渭干河—库车河三角洲土壤水盐与植被覆盖度的关系[J]. 干旱区研究, 2024, 41(7): 1131-1139. |
[4] | 颜巧芳, 单立山, 解婷婷, 王红永, 师亚婷. 珍珠柴幼苗叶片和根系形态特征对干旱胁迫的响应[J]. 干旱区研究, 2024, 41(1): 92-103. |
[5] | 周静,孙永峰,丁杰萍,白浩江,马祥,王旭洋,罗永清. 退化沙质草地恢复过程中植被生物量变化及其与土壤碳的关系[J]. 干旱区研究, 2023, 40(9): 1457-1464. |
[6] | 王思淇, 张建军, 张彦勤, 赵炯昌, 胡亚伟, 李阳, 唐鹏, 卫朝阳. 晋西黄土区不同密度刺槐林下植物群落物种多样性[J]. 干旱区研究, 2023, 40(7): 1141-1151. |
[7] | 石建周, 刘贤德, 田青, 于澎涛, 王彦辉. 六盘山半干旱区华北落叶松林坡面土壤含水量的降雨响应[J]. 干旱区研究, 2023, 40(4): 594-604. |
[8] | 毛正君,耿咪咪. 紫花苜蓿根系抗拉力学特性及其影响因素研究[J]. 干旱区研究, 2023, 40(2): 235-246. |
[9] | 郑欣如, 王树森, 王博, 张欣, 刘静, 胡晶华, 李诗文, 袁亚楠, 王丫博. 采煤沉陷区模拟土壤侵蚀胁迫对黑沙蒿生理生长特性的影响[J]. 干旱区研究, 2023, 40(11): 1806-1814. |
[10] | 王紫瑄, 解甜甜, 王雅茹, 杨杰艳, 杨秀清. 丛枝菌根真菌(AMF)对蒙古沙冬青幼苗的促生特性及作用机制[J]. 干旱区研究, 2023, 40(1): 78-89. |
[11] | 杨慧,张泽,张兰,闫兴富. 柠条种子萌发对不同温度和土壤含水量的响应[J]. 干旱区研究, 2022, 39(6): 1875-1884. |
[12] | 李泽厚,李蕊希,张舒斌,王崇斌,郑明明,董叶卿,吴雪. 多枝柽柳叶片结构和化学性状对土壤水分变化的响应[J]. 干旱区研究, 2022, 39(5): 1486-1495. |
[13] | 袁立敏,杨制国,薛博,高海燕,韩照日格图. 呼伦贝尔草原风蚀坑土壤水分异质效应研究[J]. 干旱区研究, 2022, 39(5): 1598-1606. |
[14] | 王佳,田青,王理德,何洪盛,宋达成,郭春秀. 民勤青土湖区不同年限退耕地对土壤水分与物种多样性的影响[J]. 干旱区研究, 2022, 39(2): 605-614. |
[15] | 宋良翠,马维伟,李广,龙永春,常文华. 水分对尕海湿地退化演替土壤氮矿化的影响[J]. 干旱区研究, 2022, 39(1): 165-175. |
|