干旱区研究 ›› 2023, Vol. 40 ›› Issue (9): 1484-1497.doi: 10.13866/j.azr.2023.09.12 cstr: 32277.14.j.azr.2023.09.12
陈春波1,2(),李均力1,2,赵炎3,夏江3(),田伟涛3,李超锋4
收稿日期:
2023-03-23
修回日期:
2023-05-04
出版日期:
2023-09-15
发布日期:
2023-09-28
作者简介:
陈春波(1985-),男,助理研究员,主要从事干旱区草地生态健康智能监测、评估与预警. E-mail: 基金资助:
CHEN Chunbo1,2(),LI Junli1,2,ZHAO Yan3,XIA Jiang3(),TIAN Weitao3,LI Chaofeng4
Received:
2023-03-23
Revised:
2023-05-04
Published:
2023-09-15
Online:
2023-09-28
摘要:
基于MODIS NPP、EVI遥感影像,采用MVC法、一元线性回归法与Pearson相关分析法,探讨天山北坡昌吉州草地植被时空动态及其对同期气温、降水的响应。结果表明:2000—2020年,草地植被NPP、EVI均为跃动式显著递增,2016年后呈逐年递减;NPP、EVI多年均值为0.095 kg C·m-2、0.186;相较于2000年(NPP=0.077 kg C·m-2、EVI=0.166),2020年NPP(0.099 kg C·m-2)、EVI(0.194)分别增长了28.57%、16.87%。草地NPP空间异质性显著增加并呈扩大趋势,EVI空间差异逐年递增,变化范围分别为0.038 kg C·m-2(NPP)、0.059(EVI)。在空间上,NPP、EVI多年平均分布具有差异;总体上,NPP、EVI随海拔升高而增加,但绿洲边缘、古尔班通古特沙漠南缘分布有高位EVI,面积占比65.01%的NPP与21.93%的EVI显著递增。9种草地类型植被NPP、EVI与降水呈显著正相关的面积占比远大于同期气温,不同类型草地对降水的响应具有差异。降水是草地植被的重要影响因子,但高海拔区域的适度增温有益于草地植被生长。
陈春波,李均力,赵炎,夏江,田伟涛,李超锋. 新疆草地时空动态及其对气候变化的响应——以昌吉回族自治州为例[J]. 干旱区研究, 2023, 40(9): 1484-1497.
CHEN Chunbo,LI Junli,ZHAO Yan,XIA Jiang,TIAN Weitao,LI Chaofeng. Spatiotemporal dynamics of grassland vegetation and its responses to climate change in Changji Hui Autonomous Prefecture, Xinjiang[J]. Arid Zone Research, 2023, 40(9): 1484-1497.
表1
昌吉州草地植被NPP分区内EVI相关指标统计"
NPP分区/(kg C·m-2) | 占比/% | 最低值 | 最高值 | 平均值 | 标准差 |
---|---|---|---|---|---|
< 0.05 | 37.37 | 0.01 | 0.78 | 0.1 | 0.03 |
0.05~0.10 | 30.9 | 0.04 | 0.78 | 0.17 | 0.11 |
0.10~0.15 | 11.28 | 0.06 | 0.76 | 0.22 | 0.11 |
0.15~0.20 | 6.55 | 0.15 | 0.73 | 0.29 | 0.11 |
0.20~0.25 | 3.56 | 0.16 | 0.7 | 0.33 | 0.09 |
0.25~0.30 | 2.82 | 0.21 | 0.68 | 0.36 | 0.07 |
0.30~0.40 | 4.35 | 0.22 | 0.71 | 0.41 | 0.06 |
0.40~0.50 | 2.24 | 0.23 | 0.77 | 0.48 | 0.09 |
> 0.50 | 0.93 | 0.27 | 0.79 | 0.47 | 0.12 |
表2
2000—2020年昌吉州各草地类型NPP、EVI变化的面积统计"
草地类型 | NPP | EVI | |||||||
---|---|---|---|---|---|---|---|---|---|
显著增加 | 增加 | 显著减少 | 减少 | 显著增加 | 增加 | 显著减少 | 减少 | ||
低平地草甸类 | 98.42 | 1.27 | 0.05 | 0.27 | 31.31 | 37.07 | 0.79 | 30.83 | |
高寒草甸类 | 88.15 | 7.62 | 1.69 | 2.55 | 25.93 | 53.68 | 2.96 | 17.43 | |
高寒草原类 | 85.38 | 13.08 | - | 1.54 | 95.00 | 5.00 | - | - | |
山地草甸类 | 78.30 | 11.20 | 5.24 | 5.26 | 13.52 | 48.07 | 5.89 | 32.52 | |
温性草甸草原类 | 68.42 | 13.3 | 8.61 | 9.67 | 15.09 | 41.73 | 8.46 | 34.72 | |
温性草原化荒漠类 | 99.85 | 0.15 | - | - | 9.06 | 70.58 | 0.12 | 20.24 | |
温性草原类 | 77.64 | 9.02 | 6.32 | 7.02 | 17.79 | 51.47 | 1.45 | 29.29 | |
温性荒漠草原类 | 93.08 | 4.04 | 0.47 | 2.41 | 15.02 | 68.26 | 0.49 | 16.23 | |
温性荒漠类 | 96.77 | 2.64 | 0.22 | 0.37 | 20.67 | 60.97 | 0.47 | 17.89 |
表3
2000—2020年昌吉州草地类型植被NPP与气温、降水相关性及显著性检验的面积统计"
草地类型 | 气温 | 降水 | |||||||
---|---|---|---|---|---|---|---|---|---|
显著正相关 | 正相关 | 显著负相关 | 负相关 | 显著正相关 | 正相关 | 显著负相关 | 负相关 | ||
低平地草甸类 | 0.00 | 35.72 | 0.06 | 55.42 | 33.42 | 54.52 | 0.00 | 3.26 | |
高寒草甸类 | 10.96 | 71.16 | 0.31 | 17.36 | 30.10 | 62.28 | 0.62 | 6.73 | |
高寒草原类 | 0.00 | 15.00 | 0.00 | 85.00 | 0.00 | 97.50 | 0.00 | 2.50 | |
山地草甸类 | 18.15 | 73.51 | 0.05 | 7.86 | 43.76 | 53.73 | 0.00 | 1.92 | |
温性草甸草原类 | 5.99 | 80.99 | 0.00 | 10.54 | 75.81 | 20.88 | 0.08 | 0.17 | |
温性草原化荒漠类 | 3.47 | 14.38 | 0.00 | 35.29 | 14.88 | 38.26 | 0.09 | 0.00 | |
温性草原类 | 0.86 | 63.48 | 0.02 | 22.75 | 57.34 | 26.74 | 0.00 | 1.50 | |
温性荒漠草原类 | 0.13 | 61.47 | 0.00 | 32.71 | 62.62 | 30.53 | 0.01 | 0.36 | |
温性荒漠类 | 0.02 | 47.34 | 0.04 | 46.24 | 12.61 | 74.59 | 0.01 | 6.42 |
表4
2000—2020年昌吉州草地类型植被EVI与气温、降水相关性及显著性检验的面积统计"
草地类型 | 气温 | 降水 | |||||||
---|---|---|---|---|---|---|---|---|---|
显著正相关 | 正相关 | 显著负相关 | 负相关 | 显著正相关 | 正相关 | 显著负相关 | 负相关 | ||
低平地草甸类 | 0.67 | 52.47 | 0.36 | 46.50 | 45.83 | 36.89 | 0.70 | 16.57 | |
高寒草甸类 | 2.52 | 47.52 | 2.17 | 47.79 | 3.64 | 59.95 | 0.92 | 35.47 | |
高寒草原类 | 0.00 | 5.00 | 0.00 | 95.00 | 0.00 | 5.00 | 0.00 | 95.00 | |
山地草甸类 | 2.57 | 61.42 | 0.96 | 35.05 | 12.51 | 69.19 | 0.25 | 18.05 | |
温性草甸草原类 | 1.53 | 68.78 | 0.33 | 29.37 | 34.09 | 61.68 | 0.19 | 4.04 | |
温性草原化荒漠类 | 3.82 | 55.11 | 0.86 | 40.22 | 27.92 | 66.20 | 0.83 | 5.05 | |
温性草原类 | 0.40 | 50.31 | 0.18 | 49.11 | 33.05 | 49.18 | 0.54 | 17.23 | |
温性荒漠草原类 | 1.67 | 54.57 | 0.48 | 43.29 | 41.22 | 51.34 | 0.25 | 7.19 | |
温性荒漠类 | 4.2 | 57.81 | 1.70 | 36.48 | 30.62 | 53.67 | 0.49 | 15.21 |
[1] | 李飞, 李冰, 闫慧, 等. 草地遥感研究进展与展望[J]. 中国草地学报, 2022, 44(12): 87-99. |
[Li Fei, Li Bing, Yan Hui, et al. Advances and prospects of grassland remote sensing research[J]. Chinese Journal of Grassland, 2022, 44(12): 87-99.] | |
[2] | 钱芮, 段新宇, 杨海军, 等. 大兴安岭林草交错带草地退化成因分析及其应对策略[J]. 中国科学: 生命科学, 2022, 52(12): 1883-1896. |
[Qian Rui, Duan Xinyu, Yang Haijun, et al. Analysis of causes of forest-steppe ecotone degradation and countermeasures in the Greater Xing’an Range[J]. Scientia Sinica (Vitae), 2022, 52(12): 1883-1896.] | |
[3] |
胡宇霞, 龚吉蕊, 朱趁趁, 等. 基于生态系统服务簇的内蒙古荒漠草原生态系统服务的空间分布特征[J]. 草业学报, 2023, 32(4): 1-14.
doi: 10.11686/cyxb2022142 |
[Hu Yuxia, Gong Jirui, Zhu Chenchen, et al. Spatial distribution of ecosystem services in the desert steppe, Inner Mongolia based on ecosystem service bundles[J]. Acta Prataculturae Sinica, 2023, 32(4): 1-14.]
doi: 10.11686/cyxb2022142 |
|
[4] | 孙桂丽, 陆海燕, 禹明柱, 等. 天山北坡经济带生态脆弱性评价及驱动力分析[J]. 西南农业学报, 2022, 35(9): 2161-2170. |
[Sun Guili, Lu Haiyan, Yu Mingzhu, et al. Ecological vulnerability spatial-time distribution and driving forces analysis in the economic belt on the northern slope of Tianshan mountains[J]. Southwest China Journal of Agricultural Sciences, 2022, 35(9): 2161-2170.] | |
[5] | 孙智斌, 高敏华, 崔雪锋. 基于遥感与GIS的天山北坡经济带2000—2015年土地利用动态变化研究[J]. 北京师范大学学报(自然科学版), 2018, 54(3): 397-404. |
[Sun Zhibin, Gao Minhua, Cui Xuefeng, et al. Land use change in north slope economic zone of Tianshan mountain based on remote sensing and GIS from 2000-2015[J]. Journal of Beijing Normal University (Natural Science), 2018, 54(3): 397-404.] | |
[6] | 张雅, 尹小君, 王伟强, 等. 基于Landsat 8 OLI遥感影像的天山北坡草地地上生物量估算[J]. 遥感技术与应用, 2017, 32(6): 1012-1021. |
[Zhang Ya, Yin Xiaojun, Wang Weiqiang, et al. Estimation of grassland aboveground biomass using Landsat 8 OLI satellite image in the northern hillside of Tianshan mountain[J]. Remote Sensing Technology and Application, 2017, 32(6): 1012-1021.] | |
[7] | 陈佼, 张丽. 天山北坡草地盖度高光谱遥感估算[J]. 草业科学, 2017, 34(1): 30-39. |
[Chen Jiao, Zhang Li. Estimating grassland coverage based on hyperspectral remote sensing in the northern Tianshan mountains[J]. Pratacultural Science, 2017, 34(1): 30-39.] | |
[8] | 吐尔逊·艾山, 吐热尼古丽·阿木提, 买买提·沙吾提, 等. 天山北坡玛纳斯河流域草地长势遥感监测[J]. 水土保持通报, 2016, 36(5):140-145. |
[Tuerxun Aishan, Tureniguli Amuti, Maimaiti Shawuti, et al. Grassland vitality monitoring based on remote sensing in Manas River Basin in northern slope of Tianshan mountain[J]. Bulletin of Soil and Water Conservation, 2016, 36(5): 140-145.] | |
[9] |
王永琪, 杜保军, 张树振, 等. 放牧对新疆天山山地草甸土壤团聚体和土壤呼吸潜力的影响[J]. 草地学报, 2022, 30(10): 2729-2736.
doi: 10.11733/j.issn.1007-0435.2022.10.023 |
[Wang Yongqi, Du Baojun, Zhang Shuzhen, et al. Effects of grazing on soil aggregates and soil respiration potential in Tianshan mountain grassland, Xinjiang[J]. Acta Agrestia Sinica, 2022, 30(10): 2729-2736.]
doi: 10.11733/j.issn.1007-0435.2022.10.023 |
|
[10] | 胡贵锋, 王新军, 常梦迪, 等. 评估放牧干扰对天山北坡土壤侵蚀及空间特征的影响[J]. 水土保持研究, 2021, 28(5): 13-21. |
[Hu Guifeng, Wang Xinjun, Chang Mengdi, et al. Assessment on the impact of grazing disturbance on spatial characteristics of soil erosion on the northern slope of Tianshan mountains[J]. Research of Soil and Water Conservation, 2021, 28(5): 13-21.] | |
[11] | 杨晶晶, 吐尔逊娜依·热依木, 张青青, 等. 放牧强度对天山北坡中段山地草甸植被群落特征的影响[J]. 草业科学, 2019, 36(8): 1953-1961. |
[Yang Jingjing, Tuerxunnayi Reyimu, Zhang Qingqing, et al. Effects of grazing intensity on plant community characteristics in mountain meadows in the middle section of the northern slope of the Tianshan mountains[J]. Pratacultural Science, 2019, 36(8): 1953-1961.] | |
[12] | 张青青, 安沙舟, 于辉, 等. 放牧对天山北坡山地草原生态系统土壤δ15N的影响[J]. 草业科学, 2016, 33(7):1260-1266. |
[Zhang Qingqing, An Shazhou, Yu Hui, et al. Impact of grazing on soil δ15N of mountainous grassland ecosystems over the northern Tianshan mountains, China[J]. Pratacultural Science, 2016, 33(7): 1260-1266.] | |
[13] | 孙霞, 丁娓, 贾宏涛, 等. 模拟放牧对天山北坡草甸草原生态系统碳储量的影响[J]. 草业科学, 2016, 33(3): 377-384. |
[Sun Xia, Ding Wei, Jia Hongtao, et al. Effect of simulated grazing on carbon storage of meadow grassland ecosystem in the north slope of Tianshan mountain[J]. Pratacultural Science, 2016, 33(3): 377-384.] | |
[14] | 丁娓, 孙霞, 贾宏涛, 等. 放牧强度对天山北坡草甸草原土壤有机碳的影响[J]. 西南农业学报, 2014, 27(4): 1596-1600. |
[Ding Wei, Sun Xia, Jia Hongtao, et al. Effect of grazing intensity on soil organic carbon in north slope of Tianshan mountain meadow grassland[J]. Southwest China Journal of Agricultural Sciences, 2014, 27(4): 1596-1600.] | |
[15] | 董乙强, 孙宗玖, 安沙舟, 等. 短期禁牧对天山北坡蒿类荒漠群落特征及其稳定性的影响[J]. 草业科学, 2018, 35(5): 996-1003. |
[Dong Yiqiang, Sun Zongjiu, An Shazhou, et al. Effect of short-term grazing exclusion on community characteristics and stability in Artemisia desert on the northern slopes of the Tianshan mountains[J]. Pratacultural Science, 2018, 35(5): 996-1003.] | |
[16] |
胡毅, 朱新萍, 贾宏涛, 等. 围栏封育对天山北坡草甸草原生态系统碳交换的影响[J]. 植物生态学报, 2018, 42(3): 372-381.
doi: 10.17521/cjpe.2016.0049 |
[Hu Yi, Zhu Xinping, Jia Hongtao, et al. Effects of fencing on ecosystem carbon exchange at meadow steppe in the northern slope of the Tianshan mountains[J]. Chinese Journal of Plant Ecology, 2018, 42(3): 372-381.]
doi: 10.17521/cjpe.2016.0049 |
|
[17] |
范燕敏, 武红旗, 孙宗玖, 等. 围封对天山北坡荒漠草地土壤有机碳的影响[J]. 草地学报, 2014, 22(1): 65-69.
doi: 10.11733/j.issn.1007-0435.2014.01.011 |
[Fan Yanmin, Wu Hongqi, Sun Zongjiu, et al. Effects of fencing on the soil organic carbon of desert grassland in the northern slope of Tianshan[J]. Acta Agrestia Sinica, 2014, 22(1): 65-69.]
doi: 10.11733/j.issn.1007-0435.2014.01.011 |
|
[18] | 哈里·阿力腾别克, 孙宗玖, 何盘星, 等. 封育对蒿类荒漠草地土壤氮素含量及其组分特征的影响[J]. 水土保持学报, 2022, 36(6): 222-230, 240. |
[Haili Alitengbieke, Sun Zongjiu, He Panxing, et al. Effects of grazing exclusion on soil nitrogen content and its component characteristics in Sagebrush desert grassland[J]. Journal of Soil and Water Conservation, 2022, 36(6): 222-230, 240.] | |
[19] |
杨峰, 李建龙, 钱育蓉, 等. 天山北坡典型退化草地植被覆盖度监测模型构建与评价[J]. 自然资源学报, 2012, 27(8): 1340-1348.
doi: 10.11849/zrzyxb.2012.08.008 |
[Yang Feng, Li Jianlong, Qian Yurong, et al. Estimating vegetation coverage of typical degraded grassland in the northern Tianshan Mountains[J]. Journal of Natural Resources, 2012, 27(8): 1340-1348.]
doi: 10.11849/zrzyxb.2012.08.008 |
|
[20] | 顾爱星, 范燕敏, 武红旗, 等. 天山北坡退化草地土壤环境与微生物数量的关系[J]. 草业学报, 2010, 19(2): 116-123. |
[Gu Aixing, Fan Yanmin, Wu Hongqi, et al. Relationship between the number of three main microorganisms and the soil environment of degraded grassland on the north slope of the Tianshan Mountains[J]. Acta Prataculturae Sinica, 2010, 19(2): 116-123.] | |
[21] | Liu H L, Zhu J Z, Jin M L, et al. Characteristic analysis of Seriphidium transillense (Poljak. ) Poljak. desert grasslands at different degraded stages in the northern Tianshan Mountains[J]. Acta Agrestia Sinica, 2009, 17(4): 419-427. |
[22] | 罗麟. 新疆草地资源介绍(一)[J]. 新疆畜牧业, 1990, 6(5): 32-36. |
[Luo Lin. Introduction to Xinjiang Grassland Resources(I)[J]. Xinjiang Xu Mu Ye, 1990, 6(5): 32-36.] | |
[23] | 许鹏. 新疆草地资源及其利用[M]. 乌鲁木齐: 新疆科技卫生出版社, 1993. |
[Xu Peng. Xinjiang Grassland Resources and Its Utilization[M]. Urumqi: Xinjiang Science and Technology Publishing House, 1993.] | |
[24] |
Tian J Q, Zhu X L, Chen J, et al. Improving the accuracy of spring phenology detection by optimally smoothing satellite vegetation index time series based on local cloud frequency[J]. Isprs Journal of Photogrammetry and Remote Sensing, 2021, 180: 29-44.
doi: 10.1016/j.isprsjprs.2021.08.003 |
[25] |
赵鹏, 陈桃, 王茜, 等. 气候变化和人类活动对新疆草地生态系统NPP影响的定量分析[J]. 中国科学院大学学报, 2020, 37(1): 51-62.
doi: 10.7523/j.issn.2095-6134.2020.01.007 |
[Zhao Peng, Chen Tao, Wang Qian, et al. Quantitative analysis of the impact of climate change and human activities on grassland ecosystem NPP in Xinjiang[J]. Journal of University of Chinese Academy of Sciences, 2020, 37(1): 51-62.]
doi: 10.7523/j.issn.2095-6134.2020.01.007 |
|
[26] | 陈春波, 李刚勇. 1981—2020年昆仑山-阿尔金山草地NDVI时空变化及其对气温、降水的响应[J]. 中国草地学报, 2023, 45(2): 13-25. |
[Chen Chunbo, Li Gangyong. Temporal and spatial variation of grassland NDVI in Kunlun Mountains, Altun Mountains and its responses to temperature and precipitation from 1981 through 2020[J]. Chinese Journal of Grassland, 2023, 45(2): 13-25.] | |
[27] |
陈宸, 井长青, 邢文渊, 等. 近20年新疆荒漠草地动态变化及其对气候变化的响应[J]. 草业学报, 2021, 30(3): 1-14.
doi: 10.11686/cyxb2020143 |
[Chen Chen, Jing Changqing, Xing Wenyuan, et al. Desert grassland dynamics in the last 20 years and its response to climate change in Xinjiang[J]. Acta Prataculturae Sinica, 2021, 30(3): 1-14.]
doi: 10.11686/cyxb2020143 |
|
[28] | 陈春波, 李刚勇, 彭建. 近20 a新疆天然草地NPP时空分析[J]. 干旱区地理, 2022, 45(2): 522-534. |
[Chen Chunbo, Li Gangyong, Peng Jian. Spatialtemporal analysis of net primary productivity for natural grassland in Xinjiang in the past 20 years[J]. Arid Land Geography, 2022, 45(2): 522-534.] | |
[29] | 陈春波, 李刚勇, 彭建. 1981—2018年新疆草地归一化植被指数时空特征及其对气候变化的响应[J]. 生态学报, 2023, 43(4): 1537-1552. |
[Chen Chunbo, Li Gangyong, Peng Jian. Spatio-temporal characteristics of Xinjiang grassland NDVI and its response to climate change from 1981 to 2018[J]. Acta Ecological Sinica, 2023, 43(4): 1537-1552.] | |
[30] |
Xue J, Wang Y Y, Teng H F, et al. Dynamics of vegetation greenness and its response to climate change in Xinjiang over the past two decades[J]. Remote Sensing, 2021, 13(20): 4063.
doi: 10.3390/rs13204063 |
[31] |
Zheng L L, Xu J H, Li A H, et al. Increasing control of climate warming on the greening of alpine pastures in central Asia[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 105: 102606.
doi: 10.1016/j.jag.2021.102606 |
[32] | 赵苇康, 井长青, 陈宸. 新疆天然草地时空变化及其对气候因子的响应[J/OL]. 中国农业科技导报, 2022-11-21. doi: 10.13304/j.nykjdb.2021.0931. |
[Zhao Weikang, Jing Changqing, Chen Chen. Temporal and spatial variation of Xinjiang natural grassland and their responses to climate factors[J/OL]. Journal of Agricultural Science and Technology, 2022-11-21. doi: 10.13304/j.nykjdb.2021.0931.] | |
[33] | 杜梦洁, 郑江华, 任璇, 等. 地形对新疆昌吉州草地净初级生产力分布格局的影响[J]. 生态学报, 2018, 38(13): 4789-4799. |
[Du Mengjie, Zheng Jianghua, Ren Xuan, et al. Effects of topography on the distribution pattern of net primary productivity of grassland in Changji Prefecture, Xinjiang[J]. Acta Ecological Sinica, 2018, 38(13): 4789-4799.] | |
[34] |
陈宸, 井长青, 赵苇康, 等. 新疆草地质量对气候变化的响应及其变化趋势[J]. 草业学报, 2022, 31(12): 1-16.
doi: 10.11686/cyxb2021458 |
[Chen Chen, Jing Changqing, Zhao Weikang, et al. Grassland quality response to climate change in Xinjiang and predicted future trends[J]. Acta Prataculturae Sinica, 2022, 31(12): 1-16.]
doi: 10.11686/cyxb2021458 |
|
[35] | 申孝军, 张笑培, 姚宝林, 等. 气候变化对新疆膜下滴灌花生适宜播期的影响[J]. 农业工程学报, 2023, 39(2): 107-115. |
[Shen Xiaojun, Zhang Xiaopei, Yao Baolin, et al. Effects of climate change on the suitable sowing dates for peanut under mulched drip irrigation in Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(2): 107-115.] | |
[36] | 邬晓丹, 罗敏, 孟凡浩, 等. 气候暖湿化背景下新疆极端气候事件时空演变特征分析[J]. 干旱区研究, 2022, 39(6): 1695-1705. |
[Wu Xiaodan, Luo Min, Meng Fanhao, et al. New characteristics of spatio-temporal evolution of extreme climate events in Xinjiang under the background of warm and humid climate[J]. Arid Zone Research, 2022, 39(6): 1695-1705.] | |
[37] | 李岩, 何学敏, 张雪妮, 等. 早春短命植物鸢尾蒜和准噶尔鸢尾蒜的光合途径[J]. 西北植物学报, 2020, 40(8): 1339-1346. |
[Li Yan, He Xuemin, Zhang Xueni, et al. Photosynthetic pathway of early spring ephemeral plants Ixiolirion songaricum and Ixiolirion wtataricum[J]. Act Boreali-Occidentalia Sinica, 2020, 40(8): 1339-1346.] | |
[38] | 唐金, 李霞, 牛婷. 古尔班通古特沙漠南缘近10年NDVI变化趋势与气象因子的关系[J]. 水土保持通报, 2011, 31(6): 171-174. |
[Tang Jin, Li Xia, Niu ting. Relationship between NDVI and climate factors in south Gurbantunggut Desert in past 10 years[J]. Bulletin of Soil and Water Conservation, 2011, 31(6): 171-174.] | |
[39] | 杨怡, 吴世新, 庄庆威, 等. 2000—2018年古尔班通古特沙漠EVI时空变化特征[J]. 干旱区研究, 2019, 36(6): 1512-1520. |
[Yang Yi, Wu Shixin, Zhuang Qingwei, et al. Spatiotemporal change of EVI in the Gurbantunggut Desert from 2000 to 2018[J]. Arid Zone Research, 2019, 36(6): 1512-1520.] | |
[40] | 段呈, 吴玲, 王绍明, 等. 近30年古尔班通古特沙漠短命植物的时空格局[J]. 生态学报, 2017, 37(8): 2642-2652. |
[Duan Cheng, Wu Ling, Wang Shaoming, et al. Analysis of spatio-temporal patterns of ephemeral plants in the Gurbantünggüt Desert over the last 30 years[J]. Acta Ecological Sinica, 2017, 37(8): 2642-2652.] | |
[41] | 唐海萍, 袁素芬. 新疆短命植物[M]. 北京: 高等教育出版社, 2021. |
[Tang Haiping, Yuan Sufen. Ephemeral Plants in Xinjiang, China[M]. Beijing: Higher Education Press, 2021.] | |
[42] | 陈春波, 彭建, 李刚勇. 新疆草地生态系统健康评价体系构建[J]. 干旱区研究, 2022, 39(1): 270-281. |
[Chen Chunbo, Peng Jian, Li Gangyong. Evaluating ecosystem health in the grasslands of Xinjiang[J]. Arid Zone Research, 2022, 39(1): 270-281.] | |
[43] | 李刚勇, 陈春波, 李均力, 等. 低空无人机遥感在草原监测评价中的应用进展[J]. 生态学报, 2023, 43(16): 1-13. |
[Li Gangyong, Chen Chunbo, Li Junli, et al. Advances in applying low-altitude unmanned aerial vehicle remote sensing in grassland ecological monitoring[J]. Acta Ecological Sinica, 2023, 43(16): 1-13.] | |
[44] | 陈春波, 李刚勇, 彭建, 等. 新疆草地生态健康智能监测网络体系构建[J]. 草业科学, 2023, 40(5): 1420-1434. |
[Chen Chunbo, Li Gangyong, Peng Jian, et al. The systematic construction of a smart network for ecological health observation of grassland in Xinjiang[J]. Pratacultural Science, 2023, 40(5): 1420-1434.] | |
[45] |
Yan J J, Zhang G P, Ling H B, et al. Comparison of time-integrated NDVI and annual maximum NDVI for assessing grassland dynamics[J]. Ecological Indicators, 2022, 136: 108611.
doi: 10.1016/j.ecolind.2022.108611 |
[1] | 张彬, 郑新军, 王玉刚, 唐立松, 李彦, 杜澜, 田胜川. 1990—2022年天山北坡地区不同开垦年限耕层土壤盐分变化[J]. 干旱区研究, 2024, 41(9): 1435-1445. |
[2] | 李宇航, 余文学, 杨永均, 朱燕峰, 马静, 陈浮. 近60 a天山北坡经济带天然径流量时空变化及归因识别[J]. 干旱区研究, 2024, 41(9): 1446-1455. |
[3] | 万佳怡, 矢佳昱, 张华敏, 李兰晖, 丁明军. 三江源区不同覆被类型高寒草甸土壤水分变化特征[J]. 干旱区研究, 2024, 41(8): 1343-1353. |
[4] | 张顺鑫, 吴子豪, 闫庆武, 李桂娥, 牟守国. 基于PLUS-InVEST模型的天山北坡生态系统碳储量时空变化与预测[J]. 干旱区研究, 2024, 41(7): 1228-1237. |
[5] | 梁元也, 范连连, 马学喜, 毛洁菲, 惠婷婷, 李耀明. 新疆北部六种草地类型土壤碳氮磷生态化学计量特征[J]. 干旱区研究, 2024, 41(10): 1708-1718. |
[6] | 其美拉姆, 郑诚, 袁浏欢, 吴沛桐, 谭凯, 申乔天, 史海静. 青藏高原植被光能利用效率时空变化[J]. 干旱区研究, 2024, 41(10): 1731-1739. |
[7] | 沙涛, 张玲卫, 刘会良, 张岚, 卢妤婷, 周鑫宇, 文晓虎, 张元明. 降水、氮沉降对尖喙牻牛儿苗隔代生理可塑性的影响[J]. 干旱区研究, 2024, 41(10): 1753-1766. |
[8] | 周静,孙永峰,丁杰萍,白浩江,马祥,王旭洋,罗永清. 退化沙质草地恢复过程中植被生物量变化及其与土壤碳的关系[J]. 干旱区研究, 2023, 40(9): 1457-1464. |
[9] | 周小东, 常顺利, 王冠正, 张毓涛, 喻树龙, 张同文. 天山北坡中段雪岭云杉径向生长对气候变化的响应[J]. 干旱区研究, 2023, 40(8): 1215-1228. |
[10] | 文妙霞, 何学高, 刘欢, 张婧, 罗晨, 贾丰铭, 王义贵, 胡云云. 基于地理探测器的宁夏草地植被覆被时空分异及驱动因子[J]. 干旱区研究, 2023, 40(8): 1322-1332. |
[11] | 张红丽, 韩富强, 张良, 王莉霞, 孙源, 李富民. 西北地区气候暖湿化空间与季节差异分析[J]. 干旱区研究, 2023, 40(4): 517-531. |
[12] | 赵剑, 邓成军, 李文利, 赵金, 公延明, 李凯辉. 近35 a新疆天山巴音布鲁克草原退化程度评价[J]. 干旱区研究, 2023, 40(4): 636-646. |
[13] | 李红梅, 巴贺贾依娜尔·铁木尔别克, 常顺利, 古丽哈娜提·波拉提别克, 张毓涛, 李吉枚. MixSIAR和IsoSource模型对比分析天山北坡不同灌木的夏季水分来源[J]. 干旱区研究, 2023, 40(3): 445-455. |
[14] | 王冠正, 常顺利, 王建萍, 张毓涛, 孙雪娇, 李翔. 不同坡向雪岭云杉天然更新影响因素分析[J]. 干旱区研究, 2023, 40(10): 1661-1669. |
[15] | 刘欢欢, 陈印, 刘悦, 刚成诚. 基于随机森林模型的黄土高原草地净初级生产力时空格局及未来演变趋势模拟[J]. 干旱区研究, 2023, 40(1): 123-131. |
|