[1] |
李晴, 杨鹏年, 彭亮, 等. 基于MOD16数据的焉耆盆地蒸散量变化研究[J]. 干旱区研究, 2021, 38(2): 351-358.
|
|
[Li Qing, Yang Pengnian, Peng Liang, et al. Study of the variation trend of evapotranspiration in the Yanqi Basin based on MOD16 data[J]. Arid Zone Research, 2021, 38(2): 351-358.]
|
[2] |
Lu X, Zang C, Burenina T. Study on the variation in evapotranspiration in different period of the Genhe River Basin in China[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2020, 120: 102902.
doi: 10.1016/j.pce.2020.102902
|
[3] |
Huntington T G. Evidence for intensification of the global water cycle: Review and synthesis[J]. Journal of Hydrology, 2006, 319(1-4): 83-95.
doi: 10.1016/j.jhydrol.2005.07.003
|
[4] |
Yu L, Josey S A, Bingham F M, et al. Intensification of the global water cycle and evidence from ocean salinity: A synthesis review[J]. Annals of the New York Academy of Sciences, 2020, 1472(1): 76-94.
doi: 10.1111/nyas.14354
pmid: 32386251
|
[5] |
史孟琦, 袁喆, 史晓亮, 等. 基于GLDAS-NOAH的长江流域蓝绿水资源时空变化特征[J]. 长江科学院院报, 2022, 39(10): 38-44, 53.
|
|
[Shi Mengqi, Yuan Zhe, Shi Xiaoliang, et al. Spatial and temporal variation characteristics of blue and green water resources in the Yangtze River Basin based on GLDAS-NOAH[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(10): 38-44, 53.]
|
[6] |
杨晓甜, 张建云, 鲍振鑫, 等. 黄淮海流域实际蒸散发时空演变规律分析[J]. 水利水运工程学报, 2022, 44(3): 12-22.
|
|
[Yang Xiaotian, Zhang Jianyun, Bao Zhenxin, et al. Temporal and spatial distribution characteristics of evapotranspiration in the Huang-Huai-Hai River Basin[J]. Hydro-Science and Engineering, 2022, 44(3): 12-22.]
|
[7] |
郭晓彤, 孟丹, 蒋博武, 等. 基于MODIS蒸散量数据的淮河流域蒸散发时空变化及影响因素分析[J]. 水文地质工程地质, 2021, 48(3): 45-52.
|
|
[Guo Xiaotong, Meng Dan, Jiang Bowu, et al. Spatio-temporal change and influencing factors of evapotranspiration in the Huaihe River Basin based on MODIS evapotranspiration data[J]. Hydrogeology& Engineering Geology, 2021, 48(3): 45-52.]
|
[8] |
梁红闪, 王丹, 郑江华. 伊犁河流域地表蒸散量时空特征分析[J]. 灌溉排水学报, 2020, 39(7): 100-110.
|
|
[Liang Hongshan, Wang Dan, Zheng Jianghua. Temporal and spatial characteristics of surface evapotranspiration in the Ili River Basin[J]. Journal of Irrigation and Drainage, 2020, 39(7): 100-110.]
|
[9] |
蒙雨, 但文红, 王焕. 基于MOD16的乌江流域地表蒸散发时空特征及影响因素[J]. 水土保持研究, 2020, 27(6): 139-145.
|
|
[Meng Yu, Dan Wenhong, Wang Huan. Spatiotemporal characteristics of evapotranspiration and its affecting factors in Wujiang Basin based on MOD16[J]. Research of Soil and Water Conversation, 2020, 27(6): 139-145.]
|
[10] |
褚荣浩, 李萌, 谢鹏飞, 等. 安徽省近20年地表蒸散和干旱变化特征及其影响因素分析[J]. 生态环境学报, 2021, 30(6): 1229-1239.
doi: 10.16258/j.cnki.1674-5906.2021.06.014
|
|
[Chu Ronghao, Li Meng, Xie Pengfei, et al. Characteristics and influencing factors of surface evapotranspiration and drought in Anhui Province during recent 20 years[J]. Ecology and Environmental Sciences, 2021, 30(6): 1229-1239.]
doi: 10.16258/j.cnki.1674-5906.2021.06.014
|
[11] |
温媛媛, 赵军, 王炎强, 等. 基于MOD16的山西省地表蒸散发时空变化特征分析[J]. 地理科学进展, 2020, 39(2): 255-264.
doi: 10.18306/dlkxjz.2020.02.007
|
|
[Wen Yuanyuan, Zhao Jun, Wang Yanqiang, et al. Spatiotemporal variation characteristics of surface evapotranspiration in Shanxi Province based on MOD16[J]. Progress in Geography, 2020, 39(2): 255-264.]
doi: 10.18306/dlkxjz.2020.02.007
|
[12] |
姚檀栋, 陈发虎, 崔鹏, 等. 从青藏高原到第三极和泛第三极[J]. 中国科学院院刊, 2017, 32(9): 924-931.
|
|
[Yao Tandong, Chen Fahu, Cui Peng, et al. From Tibetan Plateau to Third Pole and Pan-Third Pole[J]. China Academic Journal Electronic Publishing House, 2017, 32(9): 924-931.]
|
[13] |
陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估: 过去, 现在与未来[J]. 科学通报, 2015, 60(32): 3025-3035, 1-2.
|
|
[Chen Deliang, Xu Baiqing, Yao Tandong, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau[J]. Chinese Science Bulletin, 2015, 60(32): 3025-3035, 1-2.]
|
[14] |
姚檀栋, 朴世龙, 沈妙根, 等. 印度季风与西风相互作用在现代青藏高原产生连锁式环境效应[J]. 中国科学院院刊, 2017, 32(9): 976-984.
|
|
[Yao Tandong, Piao Shilong, Shen Miaogen, et al. Chained impacts on modern environment of interaction between westerlies and Indian monsoon on Tibetan Plateau[J]. China Academic Journal Electronic Publishing House, 2017, 32(9): 976-984.]
|
[15] |
李岳坦, 李小雁, 崔步礼, 等. 青海湖流域及周边地区蒸发皿蒸发量变化(1961—2007年)及趋势分析[J]. 湖泊科学, 2010, 22(4): 616-624.
|
|
[LI Yuetan, Li Xiaoyan, Cui Buli, et al. Trend of pan evaporation and its impact factors over Lake Qinghai Basin from 1961 to 2007[J]. Lake Science, 2010, 22(4): 616-624.]
|
[16] |
Chen J L, Yang H, Lu M Q, et al. Estimation of monthly pan evaporation using support vector machine in Three Gorges Reservoir Area, China[J]. Theoretical and Applied Climatology, 2019, (4): 1-13.
|
[17] |
田凤云, 吴成来, 张贺, 等. 基于CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
doi: 10.11867/j.issn.1001-8166.2021.084
|
|
[Tian Fengyun, Wu Chenglai, Zhang He, et al. Simulation and projection of evapotranspiration over the Tibetan Plateau based on CAS-ESM2[J]. Advances in Earth Science, 2021, 36(8): 797-809.]
doi: 10.11867/j.issn.1001-8166.2021.084
|
[18] |
Gao Y, Zhao C, Ashiq M W, et al. Actual evapotranspiration of subalpine meadows in the Qilian Mountains, Northwest China[J]. Journal of Arid Land, 2019, 11(3): 371-384.
doi: 10.1007/s40333-019-0012-y
|
[19] |
张耀宗, 张勃, 张多勇, 等. 1960—2018年黄土高原地区蒸发皿蒸发时空变化特征及影响因素[J]. 干旱区研究, 2022, 39(1): 1-9.
|
|
[Zhang Yaozong, Zhang Bo, Zhang Duoyong, et al. Spatio temporal patterns of pan evaporation from 1960 to 2018 over the Loess Plateau: Changing properties and possible causes[J]. Arid Zone Research, 2022, 39(1): 1-9.]
|
[20] |
汉光昭, 曹广超, 曹生奎, 等. 基于Shuttleworth-Wallace模型的小泊湖和沙柳河河源区湿地蒸散发模拟研究[J]. 湿地科学, 2019, 17(5): 519-526.
|
|
[Han Guangzhao, Cao Guangchao, Cao Shengkui, et al. Simulation of evapotranspiration of Xiaopo Lake and Shaliu River Headwater Wetlands based on Shuttleworth-Wallace Model[J]. Wetland Science, 2019, 17(5): 519-526.]
|
[21] |
王志刚, 曹生奎, 曹广超, 等. 青海湖沙柳河河源区降水同位素云下二次蒸发效应[J]. 地球与环境, 2022, 50(1): 83-93.
|
|
[Wang Zhigang, Cao Shengkui, Cao Guanchao, et al. Effects of secondary evaporation under clouds on the precipitation isotope in the Headwater Area of Shaliu River, Qinghai Lake[J]. Earth And Environment, 2022, 50(1): 83-93.]
|
[22] |
Cui B L, Li X Y. Runoff processes in the Qinghai Lake Basin, Northeast Qinghai-Tibet Plateau, China: Insights from stable isotope and hydrochemistry[J]. Quaternary International, 2015, 380-381(4): 123-132.
doi: 10.1016/j.quaint.2015.02.030
|
[23] |
杨羽帆, 曹生奎, 冯起, 等. 青海湖沙柳河流域浅层地下水氢氧稳定同位素分布特征[J]. 中国沙漠, 2019, 39(5): 45-53.
|
|
[Yang Yufan, Cao Shengkui, Feng Qi, et al. Spatial distribution characteristics of composition of stable hydrogen and oxygen isotopes of shallow groundwater in Shaliu River Basin of Qinghai Lake[J]. Journal of Desert Research, 2019, 39(5): 45-53.]
|
[24] |
An Z S, Colman S M, Zhou W J, et al. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka[J]. Scientific Reports, 2012, 2(8): 619.
doi: 10.1038/srep00619
|
[25] |
雷义珍, 曹生奎, 曹广超, 等. 青海湖沙柳河流域不同时期地表水与地下水的相互作用[J]. 自然资源学报, 2020, 35(10): 2528-2538.
doi: 10.31497/zrzyxb.20201017
|
|
[Lei Yizhen, Cao Shengkui, Cao Guangchao, et al. Study on surface water and groundwater interaction of Shaliu River Basin in Qinghai Lake in different periods[J]. Journal of Natural Resources, 2020, 35(10): 2528-2538.]
doi: 10.31497/zrzyxb.20201017
|
[26] |
中华人民共和国生态环境部. 全国生态状况调查评估技术规范——草地生态系统野外观测(HJ1168-2021)[S]. 北京: 中国标准出版社, 2021.
|
|
[Ministry of Ecology and Environment of the People’s Republic of China. Technical Specification for Investigation and Assessment of National Ecological Status: Field Observation of Grassland Ecosystem (HJ1168-2021)[S]. Beijing: China Standards Press, 2021.]
|
[27] |
黄葵, 卢毅敏, 魏征, 等. 土地利用和气候变化对海河流域蒸散发时空变化的影响[J]. 地球信息科学学报, 2019, 21(12): 1888-1902.
doi: 10.12082/dqxxkx.2019.190269
|
|
[Huang Kui, Lu Yimin, Wei Zheng, et al. Effects of land use and climate change on spatiotemporal changes of evapotranspiration in Haihe River Basin[J]. Journal of Geo-information Science, 2019, 21(12): 1888-1902.]
doi: 10.12082/dqxxkx.2019.190269
|
[28] |
刘燕, 刘友存, 陈明, 等. 基于Penman-Monteith的江南丘陵地区地表参考蒸散量和水分盈亏量特征分析[J]. 安徽农业大学学报, 2019, 46(4): 680-688.
|
|
[Liu Yan, Liu Youcun, Chen Ming, et al. Analysis on the variation characteristics of surface water in the Jiangnan Hills based on the Penman-Monteith method[J]. Journal of Anhui Agricultural University, 2019, 46(4): 680-688.]
|
[29] |
李净, 王丹. 3种不同遥感辐射产品的精度比较[J]. 气候与环境研究, 2018, 23(2): 252-258.
|
|
[Li Jing, Wang Dan. A comparative study on three types of remote sensing solar radiation products[J]. Climatic and Environmental Research, 2018, 23(2): 252-258.]
|
[30] |
王志刚, 曹生奎, 曹广超. 近15年来青海湖流域气温, 降水变化对植被物候驱动分析[J]. 水土保持研究, 2022, 29(1): 249-255.
|
|
[Wang Zhigang, Cao Shengkui, Cao Guanchao. Changes in temperature and precipitation in Qinghai Lake Basin in the past 15 years have driven analysis of vegetation phenology[J]. Research of Soil and Water Conversation, 2022, 29(1): 249-255.]
|
[31] |
Zhang Y, Pea-arancibia J L, Mcvicar T R, et al. Multi-decadal trends in global terrestrial evapotranspiration and its components[J]. Scientific Reports, 2016, 6(1): 19124.
doi: 10.1038/srep19124
|
[32] |
马宁. 近40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8), 836-848.
doi: 10.11867/j.issn.1001-8166.2021.079
|
|
[Ma Ning. Comparative analysis of evapotranspiration changes in typical alpine grasslands and wetlands on the Qinghai-Tibet Plateau in the past 40 years[J]. Advances In Earth Science, 2021, 36(8): 836-848.]
doi: 10.11867/j.issn.1001-8166.2021.079
|
[33] |
李艳君. 2010—2019年青海湖流域蒸散发及对气候变化的响应[J]. 佳木斯大学学报(自然科学版), 2022, 40(2): 116-118, 122.
|
|
[LiYanjun. The evapotranspiration and its response to climate[J]. Journal of Jiamusi University (Natural Science Edition), 2022, 40(2): 116-118, 122.]
|
[34] |
金晓媚, 郭任宏, 夏薇. 基于MODIS数据的柴达木盆地区域蒸散量的变化特征[J]. 水文地质工程地质, 2013, 40(6): 8-13.
|
|
[Jin Xiaomei, Guo Renhong, Xia Wei. Variation of regional evapotranspiration of Qaidam Basin using MODIS data[J]. Hydrogeology & Engineering Geology, 2013, 40(6): 8-13.]
|