干旱区研究 ›› 2023, Vol. 40 ›› Issue (12): 1982-1995.doi: 10.13866/j.azr.2023.12.11 cstr: 32277.14.j.azr.2023.12.11
收稿日期:
2023-05-30
修回日期:
2023-08-04
出版日期:
2023-12-15
发布日期:
2023-12-18
作者简介:
王怡恩(2001-),女,硕士研究生,研究方向为植被生态遥感. E-mail: 基金资助:
WANG Yi’en1,2(),RAO Liangyi1,2()
Received:
2023-05-30
Revised:
2023-08-04
Published:
2023-12-15
Online:
2023-12-18
摘要:
砒砂岩区是黄土高原水土流失最严重的地区之一,其植被生长状况对该区控制土壤侵蚀和维护生态平衡起着重要作用。本文基于CASA模型和Rclimdex 1.0分别计算了2001—2021年砒砂岩区植被净初级生产力NPP和18个极端气候指数,采用趋势分析、相关分析、随机森林重要性排序、残差分析等研究了砒砂岩区NPP时空变化及其对气候因素的响应特征,并量化了气候因素和人类活动对砒砂岩区NPP的相对贡献。结果表明:(1) 2001—2021年砒砂岩区NPP变化呈显著增加趋势,但未来82.5%的区域NPP将由增加趋势变为减少趋势。(2) 年际尺度上,砒砂岩区NPP与年均气温、年总降水量、极端强降水指数主要呈正相关,与冷夜日数TN10P、气温日较差DTR呈负相关。季节尺度上,春季均温以及暖夜日数增加有利于NPP增加,且存在滞后影响。夏季暖昼日数增加不利于植被生长,且NPP对夏季暖昼日数存在3个月的滞后响应。夏季极端强降水有利于NPP增加,而夏季干旱不利于植被生长,且NPP对持续干燥日数CDD存在3个月的滞后响应。(3) 气候因素和人类活动共同促进了砒砂岩区NPP增加,裸露区和覆沙区气候贡献占主导地位,气候因素相对贡献为62.13%和60.06%,覆土区以人类活动贡献为主导,人类活动贡献率为60.40%。
王怡恩, 饶良懿. 气候因素和人类活动对砒砂岩区植被净初级生产力的影响[J]. 干旱区研究, 2023, 40(12): 1982-1995.
WANG Yi’en, RAO Liangyi. Impact of climatic factors and human activities on the net primary productivity of the vegetation in the Pisha sandstone area[J]. Arid Zone Research, 2023, 40(12): 1982-1995.
表1
极端气候指数"
类别 | 代码 | 名称 | 定义 | 单位 |
---|---|---|---|---|
极端气温冷极值 | TN10P | 冷夜日数 | 日最低气温<10%分位值的日数 | d |
TX10P | 冷昼日数 | 日最高气温<10%分位值的日数 | d | |
TNn | 日最低气温极小值 | 每月内日最低气温的最小值 | ℃ | |
TXn | 日最高气温极小值 | 每月内日最高气温的最小值 | ℃ | |
极端气温暖极值 | TN90P | 暖夜日数 | 日最低气温>90%分位值的日数 | d |
TX90P | 暖昼日数 | 日最高气温>90%分位值的日数 | d | |
TNx | 日最低气温极大值 | 每月内日最低气温的最大值 | ℃ | |
TXx | 日最高气温极大值 | 每月内日最高气温的最大值 | ℃ | |
其他气温指数 | DTR | 气温日较差 | 最高气温与最低气温的差值 | ℃ |
GSL | 生长季长度 | 日平均气温第一次连续6 d以上大于5 ℃至日平均气温第一次( 6月1日后) 连续6 d小于5 ℃的日数 | d | |
极端降水指数 | PRCPTOT | 雨日降水总量 | 雨日(日降水量≥1 mm) 降水总量 | mm |
RX1day | 1 d最大降水量 | 每月最大1 d降水量 | mm | |
RX5day | 5 d最大降水量 | 每月连续5 d最大降水量 | mm | |
R95P | 强降水量 | 每年日降水量>95%分位值的总降水量 | mm | |
R99P | 极强降水量 | 每年日降水量>99%分位值的总降水量 | mm | |
SDII | 年均雨日降水强度 | 降水量≥1 mm的总量与总日数的比值 | mm·d-1 | |
CDD | 持续干燥日数 | 日降水量<1 mm 的最长连续日数 | d | |
CWD | 持续湿润日数 | 日降水量≥1 mm 的最长连续日数 | d |
表3
砒砂岩区2001—2021年土地利用转移矩阵"
2001年 | 2021年 | 转出总量 | |||||
---|---|---|---|---|---|---|---|
草地 | 建设用地 | 耕地 | 林地 | 水域 | 未利用土地 | ||
草地 | 52.94 | 4.36 | 4.67 | 1.47 | 0.36 | 0.93 | 11.80 |
建设用地 | 0.19 | 0.97 | 0.09 | 0.02 | 0.02 | 0.01 | 0.33 |
耕地 | 5.39 | 1.70 | 13.19 | 0.47 | 0.26 | 0.11 | 7.93 |
林地 | 0.70 | 0.36 | 0.22 | 2.63 | 0.04 | 0.03 | 1.35 |
水域 | 0.48 | 0.23 | 0.30 | 0.09 | 1.86 | 0.04 | 1.14 |
未利用土地 | 2.02 | 0.27 | 0.12 | 0.13 | 0.04 | 3.28 | 2.57 |
转入总量 | 8.78 | 6.92 | 5.40 | 2.18 | 0.72 | 1.12 | 25.12 |
表4
砒砂岩区2001—2021年土地利用变化NPP转移量占比"
2001年 | 2021年 | 转出总量 | |||||
---|---|---|---|---|---|---|---|
草地 | 建设用地 | 耕地 | 林地 | 水域 | 未利用土地 | ||
草地 | 55.48 | 2.91 | 5.48 | 1.22 | 0.33 | 0.91 | 10.85 |
建设用地 | 0.19 | 0.81 | 0.09 | 0.02 | 0.01 | 0.01 | 0.32 |
耕地 | 6.41 | 1.05 | 14.70 | 0.39 | 0.25 | 0.11 | 8.21 |
林地 | 0.93 | 0.30 | 0.30 | 2.64 | -0.05 | 0.04 | 1.52 |
水域 | 0.45 | 0.20 | 0.27 | 0.07 | 1.74 | 0.03 | 1.02 |
未利用土地 | 2.23 | 0.19 | 0.10 | 0.10 | 0.04 | 0.05 | 2.66 |
转入总量 | 10.21 | 4.65 | 6.24 | 1.8 | 0.58 | 1.1 | 24.58 |
[1] | 朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报, 2007, 3(31): 413-424. |
[Zhu Wenquan, Pan Yaozhong, Zhang Jinshui. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing[J]. Journal of Plant Ecology, 2007, 3(31): 413-424. ] | |
[2] |
陈晓玲, 曾永年. 亚热带山地丘陵区植被NPP时空变化及其与气候因子的关系——以湖南省为例[J]. 地理学报, 2016, 71(1): 35-48.
doi: 10.11821/dlxb201601003 |
[Chen Xiaoling, Zeng Yongnian. Spatial and temporal variability of the net primary production (NPP) and its relationship with climate factors in subtropical mountainous and hilly regions of China: A case study in Hunan province[J]. Acta Geographica Sinica, 2016, 71(1): 35-48. ]
doi: 10.11821/dlxb201601003 |
|
[3] | Ge W, Deng L, Wang F, et al. Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2016[J]. Science of the Total Environment, 2021, 773: 145648, doi:10.1016/j.scitotenv.2021.145648. |
[4] |
Chen C, Park T, Wang X, et al. China and India lead in greening of the world through land-use management[J]. Nature sustainability, 2019, 2(2): 122-129.
doi: 10.1038/s41893-019-0220-7 pmid: 30778399 |
[5] | Piao S, Wang X, Park T, et al. Characteristics, drivers and feedbacks of global greening[J]. Nature Reviews Earth & Environment, 2020, 1(1): 14-27. |
[6] |
Higgins S I, Conradi T, Muhoko E. Shifts in vegetation activity of terrestrial ecosystems attributable to climate trends[J]. Nature Geoscience, 2023, 16(2): 147-153.
doi: 10.1038/s41561-022-01114-x |
[7] |
Wu Z, Dijkstra P, Koch G, et al. Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation[J]. Global Change Biology, 2011, 17(2): 927-942.
doi: 10.1111/gcb.2010.17.issue-2 |
[8] | 任丽雯, 王兴涛, 刘明春, 等. 石羊河流域植被净初级生产力时空变化及驱动因素[J]. 干旱区研究, 2023, 40(5): 818-828. |
[Ren Liwen, Wang Xingtao, Liu Mingchun, et al. Temporal and Spatial changes and the driving factors of vegetation NPP in Shiyang River Basin[J]. Arid Zone Research, 2023, 40(5): 818-828. ] | |
[9] | 张赟鑫, 郝海超, 范连连, 等. 中亚草地NPP时空动态及其驱动因素研究[J]. 干旱区研究, 2022, 39(3): 698-707. |
[Zhang Yunxin, Hao Haichao, Fan Lianlian, et al. Study on spatio-temporal dynamics and driving factors of NPP in Central Asian grassland[J]. Arid Zone Research, 2022, 39(3): 698-707. ] | |
[10] | Liu L, Peng J, Li G, et al. Effects of drought and climate factors on vegetation dynamics in Central Asia from 1982 to 2020[J]. Journal of Environmental Management, 2023, 328: 116997, doi:10.1016/j.jenvman.2022.116997. |
[11] |
Pan S, Tian H, Dangal S R S, et al. Impacts of climate variability and extremes on global net primary production in the first decade of the 21st century[J]. Journal of Geographical Sciences, 2015, 25(9): 1027-1044.
doi: 10.1007/s11442-015-1217-4 |
[12] | Yan W, He Y, Cai Y, et al. Relationship between extreme climate indices and spatiotemporal changes of vegetation on Yunnan Plateau from 1982 to 2019[J]. Global Ecology and Conservation, 2021, 31: e1813, doi: 10.1016/j.gecco.2021.e01813. |
[13] | Zhao M, Running S W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009[J]. Science, 2010, 5994(329): 940-943. |
[14] |
张彬, 朱建军, 刘华民, 等. 极端降水和极端干旱事件对草原生态系统的影响[J]. 植物生态学报, 2014, 38(9): 1008-1018.
doi: 10.3724/SP.J.1258.2014.00095 |
[Zhang Bin, Zhu Jianjun, Liu Huamin, et al. Effects of extreme rainfall and drought events on grassland ecosystems[J]. Chinese Journal of Plant Ecology, 2014, 38(9): 1008-1018. ]
doi: 10.3724/SP.J.1258.2014.00095 |
|
[15] |
Feng X, Fu B, Piao S, et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits[J]. Nature Climate Change, 2016, 6(11): 1019-1022.
doi: 10.1038/nclimate3092 |
[16] | Yin L, Dai E, Zheng D, et al. What drives the vegetation dynamics in the Hengduan Mountain region, southwest China: Climate change or human activity?[J]. Ecological Indicators, 2020, 112: 106013, doi: 10.1016/j.ecolind.2019.106013. |
[17] | Wang Y, Zhang Z, Chen X. The Dominant Driving Force of Forest Change in the Yangtze River Basin, China: Climate Variation or Anthropogenic Activities?[J]. Forests, 2022, 13(1): 82, doi: 10.3390/f13010082. |
[18] | 申震洲, 姚文艺, 肖培青, 等. 黄河流域砒砂岩区地貌-植被-侵蚀耦合研究进展[J]. 水利水运工程学报, 2020(4): 64-71. |
[Shen Zhenzhou, Yao Wenyi, Xiao Peiqing, et al. Research progress of spatial distribution about geomorphology-vegetation-water erosion in Pisha stone area of Yellow River[J]. Hydro-Science and Engineering, 2020(4): 64-71. ] | |
[19] | 童成立, 张文菊, 汤阳, 等. 逐日太阳辐射的模拟计算[J]. 中国农业气象, 2005, 26(3): 165-169. |
[Tong Chengli, Zhang Wenju, Tang Yang, et al. Estimation of daily solar radiation in China[J]. Chinese Journal of Agrometeorology, 2005, 26(3): 165-169. ] | |
[20] | 施亚林, 曹艳萍, 苗书玲. 黄河流域草地净初级生产力时空动态及其驱动机制[J]. 生态学报, 2023, 43(2): 731-743. |
[Shi Yalin, Cao Yanping, Miao Shuling. Spatiotemporal dynamics of grassland net primary productivity and its driving mechanisms in the Yellow River Basin[J]. Acta Ecologica Sinica, 2023, 43(2): 731-743. ] | |
[21] | He Y, Yan W, Cai Y, et al. How does the Net primary productivity respond to the extreme climate under elevation constraints in mountainous areas of Yunnan, China?[J]. Ecological Indicators, 2022, 138: 108817, doi: 10.1016/j.ecolind.2022.108817. |
[22] | 陈玉森, 艾柯代·艾斯凯尔, 王永东, 等. 1994—2018年哈萨克斯坦首都圈植被NPP时空变化特征及驱动因素[J]. 干旱区研究, 2022, 39(6): 1917-1929. |
[Chen Yusen, Akida Askarl, Wang Yongdong, et al. Characteristics and drivers of the spatial-temporal change of net primary productivity in the capital area of Kazakhstan from 1994 to 2018[J]. Arid Zone Research, 2022, 39(6): 1917-1929. ] | |
[23] | 邓兴耀, 刘洋, 刘志辉, 等. 中国西北干旱区蒸散发时空动态特征[J]. 生态学报, 2017, 37(9): 2994-3008. |
[Deng Xingyao, Liu Yang, Liu Zhihui, et al. Temporal-spatial dynamic change characteristics of evapotranspiration in arid region of Northwest China[J]. Acta Ecologica Sinica, 2017, 37(9): 2994-3008. ] | |
[24] | 宋梦来, 陈海涛, 丁晗, 等. 1990—2020年天津市植被覆盖度时空演变特征及影响因素分析[J]. 水土保持研究, 2023, 30(1): 154-163. |
[Song Menglai, Chen Haitao, Ding Han, et al. Temporal and spatial variation characteristic and influencing factors of vegetation coverage in Tianjin during 1990-2020[J]. Research of Soil and Water Conservation, 2023, 30(1): 154-163. ] | |
[25] | 徐勇, 郑志威, 戴强玉, 等. 顾及时滞效应的西南地区植被NPP变化归因分析[J]. 农业工程学报, 2022, 38(9): 297-305. |
[Xu Yong, Zheng Zhiwei, Dai Qiangyu, et al. Attribution analysis of vegetation NPP variation in Southwest China considering time-lag effects[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 297-305. ] | |
[26] | 杨丹, 王晓峰. 黄土高原气候和人类活动对植被NPP变化的影响[J]. 干旱区研究, 2022, 39(2): 584-593. |
[Yang Dan, Wang Xiaofeng. Contribution of climatic change and human activities to changes in net primary productivity in the Loess Plateau[J]. Arid Zone Research, 2022, 39(2): 584-593. ] | |
[27] | 阿多, 赵文吉, 宫兆宁, 等. 1981—2013华北平原气候时空变化及其对植被覆盖度的影响[J]. 生态学报, 2017, 37(2): 576-592. |
[A Duo, Zhao Wenji, Gong Zhaoning, et al. Temporal analysis of climate change and its relationship with vegetation cover on the North China plain from 1981 to 2013[J]. Acta Ecologica Sinica, 2017, 37(2): 576-592. ] | |
[28] |
金凯, 王飞, 韩剑桥, 等. 1982—2015年中国气候变化和人类活动对植被NDVI变化的影响[J]. 地理学报, 2020, 75(5): 961-974.
doi: 10.11821/dlxb202005006 |
[Jin Kai, Wang Fei, Han Jianqiao, et al. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982-2015[J]. Acta Geographica Sinica, 2020, 75(5): 961-974. ]
doi: 10.11821/dlxb202005006 |
|
[29] | Ma M, Wang Q, Liu R, et al. Effects of climate change and human activities on vegetation coverage change in northern China considering extreme climate and time-lag and-accumulation effects[J]. Science of the Total Environment, 2023, 860: 160527, doi: 10.1016/j.scitotenv.2022.160527. |
[30] |
刘斌, 孙艳玲, 王中良, 等. 华北地区植被覆盖变化及其影响因子的相对作用分析[J]. 自然资源学报, 2015, 30(1): 12-23.
doi: 10.11849/zrzyxb.2015.01.002 |
[Liu Bin, Sun Yanling, Wang Zhongliang, et al. Analysis of the vegetation cover change and the relative role of its influencing factors in North China[J]. Journal of Natural Resources, 2015, 30(1): 12-23. ]
doi: 10.11849/zrzyxb.2015.01.002 |
|
[31] |
刘洋洋, 王倩, 杨悦, 等. 黄土高原草地净初级生产力时空动态及其影响因素[J]. 应用生态学报, 2019, 30(7): 2309-2319.
doi: 10.13287/j.1001-9332.201907.002 |
[Liu Yangyang, Wang Qian, Yang Yue, et al. Spatial-temporal dynamics of grassland NPP and its driving factors in the Loess Plateau,China[J]. Chinese Journal of Applied Ecology, 2019, 30(7): 2309-2319. ]
doi: 10.13287/j.1001-9332.201907.002 |
|
[32] | 李学峰, 饶良懿, 徐也钦. 砒砂岩不同类型区土壤氮磷养分特征[J]. 农业工程学报, 2022, 38(5): 139-147. |
[Li Xuefeng, Rao Liangyi, Xu Yeqin. Characteristics of soil nitrogen and phosphorus nutrients in different Pisha sandstone areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(5): 139-147. ] | |
[33] | 杜睿哲, 李文栋, 高文浩, 等. 气候、地表覆被变化对砒砂岩区风蚀时空变化的影响[J]. 水土保持研究, 2023, 30(5): 1-10. |
[Du Ruizhe, Li Wendong, Gao Wenhao, et al. Influence of climate and surface cover changes on spatiotemporal changes of wind erosion in Pisha sandstone area[J]. Research of Soil and Water Conservation, 2023, 30(5): 1-10. ] | |
[34] | 包雪源, 杨振奇, 郭建英, 等. 黄河流域砒砂岩区典型水土保持植被生长特征及限制因素研究[J]. 西北林学院学报, 2023, 38(1): 50-57. |
[Bao Xueyuan, Yang Zhenqi, Guo Jianying, et al. Growth characteristics and limiting factors of typical soil and water conservation vegetation in the feldspathic sandstone region of the Yellow River[J]. Journal of Northwest Forestry University, 2023, 38(1): 50-57. ] | |
[35] |
Chen S, Zhang Q, Chen Y, et al. Vegetation change and eco-environmental quality evaluation in the Loess Plateau of China from 2000 to 2020[J]. Remote Sensing, 2023, 15(2): 424.
doi: 10.3390/rs15020424 |
[36] |
刘铮, 杨金贵, 马理辉, 等. 黄土高原草地净初级生产力时空趋势及其驱动因素[J]. 应用生态学报, 2021, 32(1): 113-122.
doi: 10.13287/j.1001-9332.202101.017 |
[Liu Zheng, Yang Jingui, Ma Lihui, et al. Spatial-temporal trend of grassland net primary production and their driving factors in the Loess Plateau, China[J]. Chinese Journal of Applied Ecology, 2021, 32(1): 113-122. ]
doi: 10.13287/j.1001-9332.202101.017 |
|
[37] | 何航, 张勃, 候启, 等. 1982—2015年中国北方生长季NDVI变化及其对气温极值的响应[J]. 干旱区研究, 2020, 37(1): 244-253. |
[He Hang, Zhang Bo, Hou Qi, et al. Spatiotemporal change of NDVI and its response to extreme temperature indices in North China from 1982 to 2015[J]. Arid Zone Research, 2020, 37(1): 244-253. ] | |
[38] | 崔嵩, 贾朝阳, 郭亮, 等. 不同海拔梯度下极端气候事件对松花江流域植被NPP的影响[J]. 环境科学, 2023: 1-17, doi: 10.13227/j.hjkx.202301118. |
[Cui Song, Jia Zhaoyang, Guo Liang, et al. Impacts of extreme climate events at different altitudinal gradient on vegetation NPP in Songhua River Basin[J]. Environmental Science, 2023: 1-17, doi: 10.13227/j.hjkx.202301118. ] | |
[39] | 朴世龙, 张新平, 陈安平, 等. 极端气候事件对陆地生态系统碳循环的影响[J]. 中国科学: 地球科学, 2019, 49(9): 1321-1334. |
[Piao Shilong, Zhang Xinping, Chen Anping, et al. The impacts of climate extremes on the terrestrial carbon cycle: A review[J]. Science China Earth Sciences, 2019, 49(9): 1321-1334. ] | |
[40] | Xu X, Jiang H, Guan M, et al. Vegetation responses to extreme climatic indices in coastal China from 1986 to 2015[J]. Science of the Total Environment, 2020, 744: 140784, doi:10.1016/j.scitotenv.2020.140784. |
[41] | 袁沫汐, 赵林, 李鑫鑫, 等. 1982—2015年中国温带不同草地植被枯黄期对极端气候事件的响应[J]. 生态学报, 2023, 14(43): 1-18. |
[Yuan Moxi, Zhao Lin, Li Xinxin, et al. Diverse responses of end of growing season to extreme climate events in different grasslands in temperate China during 1982-2015[J]. Acta Ecologica Sinica, 2023, 14(43): 1-18. ] | |
[42] |
Wan S, Xia J, Liu W, et al. Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration[J]. Ecology, 2009, 90(10): 2700-2710.
pmid: 19886480 |
[43] | 任晋媛, 佟斯琴, 包玉海, 等. 内蒙古地区极端气候变化及其对植被净初级生产力的影响[J]. 生态学杂志, 2021, 40(8): 2410-2420. |
[Ren Jinyuan, Tong Siqin, Bao Yuhai, et al. Changes of extreme climate and its effect on net primary productivity in Inner Mongolia[J]. Chinese Journal of Ecology, 2021, 40(8): 2410-2420. ] | |
[44] |
赵杰, 杜自强, 武志涛, 等. 中国温带昼夜增温的季节性变化及其对植被动态的影响[J]. 地理学报, 2018, 73(3): 395-404.
doi: 10.11821/dlxb201803001 |
[Zhao Jie, Du Ziqiang, Wu Zhitao, et al. Seasonal variations of day-and nighttime warming and their effects on vegetation dynamics in China’s temperate zone[J]. Acta Geographica Sinica, 2018, 73(3): 395-404. ]
doi: 10.11821/dlxb201803001 |
|
[45] | Kou P, Xu Q, Jin Z, et al. Complex anthropogenic interaction on vegetation greening in the Chinese Loess Plateau[J]. Science of the Total Environment, 2021, 778: 146065, doi: 10.1016/j.scitotenv.2021.146065. |
[46] | 姚文艺, 申震洲, 姚京威, 等. 黄河砒砂岩区生态治理关键技术研究[J]. 华北水利水电大学学报(自然科学版), 2023, 44(5): 1-12. |
[Yao Wenyi, Shen Zhenzhou, Yao Jingwei, et al. Research on key technologies of ecological control in the Pisha sandstone region of the Yellow River Basin[J]. Journal of North China University of Water Resources and Electric Power(Natural Science Edition), 2023, 44(5): 1-12. ] | |
[47] | 安天杭. 荒山的绿色蜕变——写在晋陕蒙砒砂岩区沙棘生态工程实施20年之际[J]. 中国水利, 2018(21): 12-17. |
[An Tianhang. Green transformation of barren mountain-tritten 20 years after the implementation of Seabuckthorn ecological project in the Pisha sandstone area of Shanxi, Shaanxi and Mongolia[J]. China Water Resources, 2018(21): 12-17. ] | |
[48] | 马晓妮, 任宗萍, 谢梦瑶, 等. 砒砂岩区植被覆盖度环境驱动因子量化分析——基于地理探测器[J]. 生态学报, 2022, 42(8): 3389-3399. |
[Ma Xiaoni, Ren Zongping, Xie Mengyao, et al. Quantitative analysis of environmental driving factors of vegetation coverage in the Pisha sandstone area based on geodetector[J]. Acta Ecologica Sinica, 2022, 42(8): 3389-3399. ] | |
[49] | 朱锐鹏, 刘殿君, 张世豪, 等. 黄土丘陵沟壑区不同土地利用类型水土流失效应[J]. 水土保持研究, 2022, 29(4): 10-17. |
[Zhu Ruipeng, Liu DianJun, Zhang Shihao, et al. Characteristics of runoff and sediment yield in different land use types in hilly and gully region of the Loess Plateau[J]. Research of Soil and Water Conservation, 2022, 29(4): 10-17. ] | |
[50] | 杨振奇, 郭建英, 秦富仓, 等. 天然降雨条件下裸露砒砂岩区人工植被的减流减沙效应[J]. 水土保持研究, 2022, 29(1): 100-104. |
[Yang Zhenqi, Guo Jianying, Qin Fucang, et al. Effect of artificial vegetation on runoff and sediment reduction by in exposed feldspathic sandstone region under natural rainfall[J]. Research of Soil and Water Conservation, 2022, 29(1): 100-104. ] | |
[51] | 张鹤, 费洪岩, 韩凤朋, 等. 植被恢复和覆土厚度对砒砂岩区土壤水分及养分的影响[J]. 水土保持通报, 2022, 42(2): 98-106. |
[Zhang He, Fei Hongyan, Han Fengpeng, et al. Effects of vegetation restoration and soil thickness on soil moisture and nutrient in feldspathic sandstone area[J]. Bulletin of Soil and Water Conservation, 2022, 42(2): 98-106. ] | |
[52] |
Gang C, Zhao W, Zhao T, et al. The impacts of land conversion and management measures on the grassland net primary productivity over the Loess Plateau, Northern China[J]. Science of the Total Environment, 2018, 645: 827-836.
doi: 10.1016/j.scitotenv.2018.07.161 |
[53] |
Mu S, Zhou S, Chen Y, et al. Assessing the impact of restoration-induced land conversion and management alternatives on net primary productivity in Inner Mongolian grassland, China[J]. Global and Planetary Change, 2013, 108: 29-41.
doi: 10.1016/j.gloplacha.2013.06.007 |
[1] | 戚曌, 闫峰, 席磊, 曹晓明, 邹佳秀, 冯益明. 鄂尔多斯高原砒砂岩区植被恢复潜力[J]. 干旱区研究, 2024, 41(9): 1583-1592. |
[2] | 吴思源, 郝利娜. 2001—2021年黄河流域植被覆盖变化及其驱动因素[J]. 干旱区研究, 2024, 41(8): 1373-1384. |
[3] | 杨荣钦, 肖玉磊, 池苗苗, 穆振侠. 近20 a塔里木河流域人类活动及景观生态风险时空变化[J]. 干旱区研究, 2024, 41(6): 1010-1020. |
[4] | 梁双河, 牛最荣, 贾玲. 祖厉河干流近65 a径流变化及归因分析[J]. 干旱区研究, 2024, 41(6): 928-939. |
[5] | 裴志林, 曹晓娟, 王冬, 李迪, 王鑫, 白艾原. 内蒙古植被覆盖时空变化特征及其对人类活动的响应[J]. 干旱区研究, 2024, 41(4): 629-638. |
[6] | 王平顺, 苗新岳, 燕亚平, 董生旺, 董少刚. 内蒙古伊敏盆地地下水水化学特征及其成因[J]. 干旱区研究, 2024, 41(3): 411-420. |
[7] | 程倩, 齐月, 刘明春, 张鹏, 丁文魁, 李兴宇, 任丽雯, 杨华. 气候变化及人类活动背景下石羊河流域生态与水资源变化特征[J]. 干旱区研究, 2024, 41(10): 1672-1684. |
[8] | 齐容镰, 李庆波, 任佳, 邹苗, 杨昊鹏, 魏耀峰, 唐琼. “三北”工程地区植被覆盖变化特征及其驱动力分析——以宁夏为例[J]. 干旱区研究, 2024, 41(10): 1740-1752. |
[9] | 赵雨琪, 魏天兴. 1990—2020年黄土高原典型县域植被覆盖变化及影响因素[J]. 干旱区研究, 2024, 41(1): 147-156. |
[10] | 胡广录,陶虎,焦娇,白元儒,陈海志,麻进. 黑河中游正义峡径流变化趋势及归因分析[J]. 干旱区研究, 2023, 40(9): 1414-1424. |
[11] | 张晓敏, 张东梅, 张伟. 人类活动对额尔齐斯河流域碳储量的影响[J]. 干旱区研究, 2023, 40(8): 1333-1345. |
[12] | 段雨佳, 何毅, 赵杰, 吴琼. 人类活动对秦岭月河流域径流变化的影响分析[J]. 干旱区研究, 2023, 40(4): 605-614. |
[13] | 陈红光, 孟凡浩, 萨楚拉, 罗敏, 王牧兰, 刘桂香. 北方牧区草原内陆河流域径流演变特征及其驱动因素分析[J]. 干旱区研究, 2023, 40(1): 39-50. |
[14] | 邬晓丹,罗敏,孟凡浩,萨楚拉,尹超华,包玉海. 气候暖湿化背景下新疆极端气候事件时空演变特征分析[J]. 干旱区研究, 2022, 39(6): 1695-1705. |
[15] | 张赟鑫,郝海超,范连连,李耀明,张仁平,李凯辉. 中亚草地NPP时空动态及其驱动因素研究[J]. 干旱区研究, 2022, 39(3): 698-707. |
|