干旱区研究 ›› 2023, Vol. 40 ›› Issue (11): 1833-1844.doi: 10.13866/j.azr.2023.11.13 cstr: 32277.14.j.azr.2023.11.13
收稿日期:
2023-06-30
修回日期:
2023-08-03
出版日期:
2023-11-15
发布日期:
2023-12-01
作者简介:
裴宏泽(2002-),男,主要研究方向为生态环境遥感. E-mail: 基金资助:
PEI Hongze(),ZHAO Yachao,ZHANG Tinglong()
Received:
2023-06-30
Revised:
2023-08-03
Published:
2023-11-15
Online:
2023-12-01
摘要:
黄土高原是中国重要的生态屏障。在全球变化的背景下,黄土高原的碳收支平衡备受关注。本研究基于MOD17A3HGF数据,通过GSMSR模型、趋势分析、差异分析以及地理探测器等方法,分析2000—2020年黄土高原的碳源/汇特征,揭示2000—2020年该区域生态系统净生产力(NEP)的时空格局及其驱动因素。同时,将研究区按经度方向划分为西、中、东三个子区域,比较不同区域内驱动因素的差异性。结果表明:(1) 近20 a黄土高原49.69%的区域从碳源向碳汇转变;NEP随时间波动上升,在东南部高于西北部,多年平均值为12 g C·m-2·a-1。(2) 水分条件是影响NEP空间分布的主要自然因素,而土地利用类型则是影响NEP空间分布的主要人为因素;不同因子间的交互作用对NEP的影响普遍大于单个因子。(3) 西、中、东三个子区域NEP的驱动因子存在明显的空间分异特征,中、西部地区受气候影响较多,以降水、湿度等水分条件为主;东部地区受地形、气候、人类活动等因素综合影响,其中,以土地利用类型为代表的人为干扰最强。
裴宏泽, 赵亚超, 张廷龙. 2000—2020年黄土高原NEP时空格局与驱动力[J]. 干旱区研究, 2023, 40(11): 1833-1844.
PEI Hongze, ZHAO Yachao, ZHANG Tinglong. Analysis of spatial and temporal patterns and drivers of local regional NEP in the Loess Plateau from 2000 to 2020[J]. Arid Zone Research, 2023, 40(11): 1833-1844.
表1
数据来源"
数据 | 时间 | 分辨率 | 数据来源 |
---|---|---|---|
净初级生产力(NPP) | 2000—2020年 | 500 m | 美国国家航空航天局( |
海拔(ALT) | - | 30 m | 地理空间数据云( |
年蒸发量(EVP) | 2000年,2010年,2020年 | 1 km | 中国科学院资源环境科学与数据中心( |
年平均地温(GST) | 2000年,2010年,2020年 | 1 km | |
年平均气压(PRS) | 2000年,2010年,2020年 | 1 km | |
年平均相对湿度(RHU) | 2000年,2010年,2020年 | 1 km | |
年日照时数(SSD) | 2000年,2010年,2020年 | 1 km | |
国内生产总值(GDP) | 2000年,2010年,2019年 | 1 km | |
人口密度(PD) | 2000年,2010年,2019年 | 1 km | |
年平均风速(WIN) | 2000年,2010年,2020年 | 1 km | |
土壤类型(SOT) | 1995年 | 1 km | |
年降水量(PRE) | 2000—2020年 | 1 km | 国家地球系统科学数据中心( |
年平均气温(TEM) | 2000—2020年 | 1 km | |
土地利用/覆盖(LULC) | 2020年 | 30 m | Zenodo( |
坡度(SLO) | - | 30 m | DEM坡度分析 |
坡向(ALP) | - | 30 m | DEM坡向分析 |
与不透水面距离(DFI) | 2020年 | 1 km | LULC提取 |
与道路距离(DFR) | 2020年 | 1 km | LULC提取 |
与水系距离(DFW) | 2020年 | 1 km | LULC提取 |
0~20 cm土壤碳密度(SOC) | 1995年 | - | 国家青藏高原科学数据中心( |
[1] |
Wei X D, Yang J, Luo P P, et al. Assessment of the variation and influencing factors of vegetation NPP and carbon sink capacity under different natural conditions[J]. Ecological Indicators, 2022, 138(22): 108834.
doi: 10.1016/j.ecolind.2022.108834 |
[2] |
Wang S H, Zhang Y G, Ju W M, et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis[J]. Science, 2020, 370(6522): 1295-1300.
doi: 10.1126/science.abb7772 |
[3] | Zhang L, Wylie K B, Ji L, et al. Upscaling carbon fluxes over the Great Plains grasslands: Sinks and sources[J]. Journal of Geophysical Research, 2011, 116(116): G00J03. |
[4] |
Cui E Q, Bian C Y, Luo Y Q, et al. Spatial variations in terrestrial net ecosystem productivity and its local indicators[J]. Biogeosciences, 2020, 17(23): 6237-6246.
doi: 10.5194/bg-17-6237-2020 |
[5] |
Keenan T F, Prentice I C, Canadell J G, et al. Recent pause in the growth rate of atmospheric CO2due to enhanced terrestrial carbon uptake[J]. Nature Communications, 2016, 7(1): 13428.
doi: 10.1038/ncomms13428 |
[6] |
Friedlingstein P, O'Sullivan M, Jones M W, et al. Global carbon budget 2020[J]. Earth System Science Data, 2020, 12(4): 3269-3340.
doi: 10.5194/essd-12-3269-2020 |
[7] |
Mao F J, Du H Q, Zhou G M, et al. Simulated net ecosystem productivity of subtropical forests and its response to climate change in Zhejiang Province, China[J]. Science of The Total Environment, 2022, 838(51): 155993.
doi: 10.1016/j.scitotenv.2022.155993 |
[8] |
Wang J, Feng L, Palmer P I, et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data[J]. Nature, 2020, 586(7831): 720-723.
doi: 10.1038/s41586-020-2849-9 |
[9] |
Chen L D, Wang J, Fu B J, et al. Land-use change in a small catchment of northern Loess Plateau, China[J]. Agriculture, Ecosystems & Environment, 2001, 86(2): 163-172.
doi: 10.1016/S0167-8809(00)00271-1 |
[10] | 张海, 王延平, 高鹏程, 等. 黄土高原坡地土壤干层形成机理及补水途径研究[J]. 水土保持学报, 2003, 17(3): 162-164. |
[Zhang Hai, Wang Yanping, Gao Pengcheng, et al. Research on mechanism about forming dry layer of slope land and way of supplying water on Loess Plateau[J]. Journal of Soil and Water Conservation, 2003, 17(3): 162-164.] | |
[11] |
Chen Y P, Wang K B, Lin Y S, et al. Balancing green and grain trade[J]. Nature Geoscience, 2015, 8(10): 739-741.
doi: 10.1038/ngeo2544 |
[12] | 修丽娜, 颜长珍, 钱大文, 等. 生态工程背景下黄土高原植被变化时空特征及其驱动力[J]. 水土保持通报, 2019, 39(4): 214-221, 228. |
[Xiu Lina, Yan Changzhen, Qian Dawen, et al. Analysis of spatial-temporal change and driving forces of vegetation in Loess Plateau under background of ecological engineering[J]. Bulletin of Soil and Water Conservation, 2019, 39(4): 214-221, 228.] | |
[13] | 王一, 郝利娜, 许强, 等. 2001—2019年黄土高原植被覆盖度时空演化特征及地理因子解析[J]. 生态学报, 2023, 43(6): 2397-2407. |
[Wang Yi, Hao Lina, Xu Qiang, et al. Spatio-temporal variations of vegetation coverage and its geographical factors analysis on the Loess Plateau from 2001 to 2019[J]. Acta Ecologica Sinica, 2023, 43(6): 2397-2407.] | |
[14] | 刘欢欢, 陈印, 刘悦, 等. 基于随机森林模型的黄土高原草地净初级生产力时空格局及未来演变趋势模拟[J]. 干旱区研究, 2023, 40(1): 123-131. |
[Liu Huanhuan, Chen Yin, Liu Yue, et al. Simulation of spatial pattern and future trends of grassland net primary productivity in the Loess Plateau based on random forest model[J]. Arid Zone Research, 2023, 40(1): 123-131.] | |
[15] | 王江涛, 杨永崇, 杨梅焕. 基于地理探测器的黄土高原NPP时空变化及驱动力研究[J]. 西安理工大学学报, 2023, 39(1): 12-20. |
[Wang Jiangtao, Yang Yongchong, Yang Meihuan. Spatial and temporal variation and driving forces of NPP on the Loess Plateau based on Geodetector[J]. Journal of Xi’an University of Technology, 2023, 39(1): 12-20.] | |
[16] | 周璐红, 曹瑞超. 黄土高原生境质量时空演变及其驱动因素[J]. 水土保持通报, 2022, 42(6): 343-350. |
[Zhou Luhong, Cao Ruichao. Spatial-temporal evolution of habitat quality and its influencing factors in Loess Plateau[J]. Bulletin of Soil and Water Conservation, 2022, 42(6): 343-350.] | |
[17] |
Li Z, Zheng F L, Liu W Z, et al. Spatial distribution and temporal trends of extreme temperature and precipitation events on the Loess Plateau of China during 1961-2007[J]. Quaternary International, 2010, 226(1-2): 92-100.
doi: 10.1016/j.quaint.2010.03.003 |
[18] | 刘凤, 曾永年. 2000—2015年青海高原植被碳源/汇时空格局及变化[J]. 生态学报, 2021, 41(14): 5792-5803. |
[Liu Feng, Zeng Yongnian. Analysis of the spatio-temporal variation of vegetation carbon source/sink in Qinghai Plateau from 2000-2015[J]. Acta Ecologica Sinica, 2021, 41(14): 5792-5803.] | |
[19] |
Zhao J F, Ma J Y, Zhu Y J. Evaluating impacts of climate change on net ecosystem productivity (NEP) of global different forest types based on an individual tree-based model FORCCHN and remote sensing[J]. Global and Planetary Change, 2019, 182(31): 103010.
doi: 10.1016/j.gloplacha.2019.103010 |
[20] |
Chuai X W, Qi X X, Zhang X Y, et al. Land degradation monitoring using terrestrial ecosystem carbon sinks/sources and their response to climate change in China[J]. Land Degradation & Development, 2018, 29(10): 3489-3502.
doi: 10.1002/ldr.v29.10 |
[21] |
Yu G R, Zheng Z M, Wang Q F, et al. Spatiotemporal pattern of soil respiration of terrestrial ecosystems in China: The development of a geostatistical model and its simulation[J]. Environmental Science & Technology, 2010, 44(16): 6074-6080.
doi: 10.1021/es100979s |
[22] | Zhang Y, Zhang C B, Wang Z Q, et al. Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region, China from 1982 to 2012[J]. Science of The Total Environment, 2016, 563- 564(45): 210-220. |
[23] |
Zhang J J, Hao X M, Hao H C, et al. Climate change decreased net ecosystem productivity in the arid region of central Asia[J]. Remote Sensing, 2021, 13(21): 4449.
doi: 10.3390/rs13214449 |
[24] |
Wang C, Zhao W Z, Zhang Y Y. The change in net ecosystem productivity and its driving mechanism in a mountain ecosystem of arid regions, Northwest China[J]. Remote Sensing, 2022, 14(16): 4046.
doi: 10.3390/rs14164046 |
[25] |
Wang J F, Zhang T L, Fu B J. A measure of spatial stratified heterogeneity[J]. Ecological Indicators, 2016, 67: 250-256.
doi: 10.1016/j.ecolind.2016.02.052 |
[26] |
王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134.
doi: 10.11821/dlxb201701010 |
[Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134.]
doi: 10.11821/dlxb201701010 |
|
[27] |
Zhang D N, Zhao Y H, Wu J S. Assessment of carbon balance attribution and carbon storage potential in China’s terrestrial ecosystem[J]. Resources Conservation and Recycling, 2023, 189(36): 106748.
doi: 10.1016/j.resconrec.2022.106748 |
[28] |
Ye X, Chuai X. Carbon sinks/sources’ spatiotemporal evolution in China and its response to built-up land expansion[J]. Journal of Environmental Management, 2022, 321(50): 115863.
doi: 10.1016/j.jenvman.2022.115863 |
[29] | Sun W Y, Song X Y, Mu X M, et al. Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau[J]. Agricultural and Forest Meteorology, 2015, 209- 210(52): 87-99. |
[30] | 王兵. 黄土丘陵区流域生态恢复环境响应及其评价[D]. 北京: 中国科学院大学, 2011. |
[Wang Bing. Environmental Response and Assessment of Watershed Ecological Restoration in Loess Hilly Region[D]. Beijing: University of Chinese Academy of Sciences, 2011.] | |
[31] | 韩磊, 杨梅丽, 刘钊, 等. 黄土高原典型退耕区生态系统服务权衡与协同关系研究——以延安市为例[J]. 生态学报, 2022, 42(20): 8115-8125. |
[Han Lei, Yang Meili, Liu Zhao, et al. Ecosystem service tradeoffs and synergies in typical farmland conversion area of the Loess Plateau: Taking Yan’an city as an example[J]. Acta Ecologica Sinica, 2022, 42(20): 8115-8125.] | |
[32] |
张子龙, 鹿晨昱, 陈兴鹏, 等. 陇东黄土高原农业生态效率的时空演变分析——以庆阳市为例[J]. 地理科学, 2014, 34(4): 472-478.
doi: 10.13249/j.cnki.sgs.2014.04.472 |
[Zhang Zilong, Lu Chenyu, Chen Xingpeng, et al. Spatio-temporal evolution of agricultural eco-efficiency in Loess Plateau of east Gansu Province: A case study of Qingyang City[J]. Scientia Geographica Sinica, 2014, 34(4): 472-478.]
doi: 10.13249/j.cnki.sgs.2014.04.472 |
|
[33] | 毛盛林, 上官周平. 近20年黄土高原土地利用/植被覆盖变化特征及其成因[J]. 水土保持研究, 2022, 29(5): 213-219. |
[Mao Shenglin, Shangguan Zhouping. Characteristics and causes of land use/vegetation coverage of the Loess Plateau in the past 20 years[J]. Research of Soil and Water Conservation, 2022, 29(5): 213-219.] | |
[34] |
Oishi A C, Miniat C F, Novick K A, et al. Warmer temperatures reduce net carbon uptake, but do not affect water use, in a mature southern Appalachian forest[J]. Agricultural and Forest Meteorology, 2018, 252(55): 269-282.
doi: 10.1016/j.agrformet.2018.01.011 |
[35] |
Wang M M, Zhao J, Wang S Q, et al. Detection and attribution of positive net ecosystem productivity extremes in China’s terrestrial ecosystems during 2000-2016[J]. Ecological Indicators, 2021, 132(21): 108323.
doi: 10.1016/j.ecolind.2021.108323 |
[36] |
Fang X, Zhang C, Wang Q, et al. Isolating and quantifying the effects of climate and CO2 changes (1980-2014) on the net primary productivity in arid and semiarid China[J]. Forests, 2017, 8(3): 60.
doi: 10.3390/f8030060 |
[37] |
Yang H F, Zhong X N, Deng S Q, et al. Assessment of the impact of LUCC on NPP and its influencing factors in the Yangtze River basin, China[J]. Catena, 2021, 206(49): 105542.
doi: 10.1016/j.catena.2021.105542 |
[38] |
Brown S, Lugo A E. Trailblazing the carbon cycle of tropical forests from Puerto Rico[J]. Forests, 2017, 8(4): 101.
doi: 10.3390/f8040101 |
[39] |
Baccini A, Walker W, Carvalho L, et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss[J]. Science, 2017, 358(6360): 230-234.
doi: 10.1126/science.aam5962 pmid: 28971966 |
[1] | 李宇航, 余文学, 杨永均, 朱燕峰, 马静, 陈浮. 近60 a天山北坡经济带天然径流量时空变化及归因识别[J]. 干旱区研究, 2024, 41(9): 1446-1455. |
[2] | 邱春霞, 刘晓宏, 李豆, 张佳淼, 李朋飞. 机载LiDAR和模糊推理系统在黄土高原土壤侵蚀监测中的应用[J]. 干旱区研究, 2024, 41(8): 1331-1342. |
[3] | 侯嘉烨, 李建华, 王佳蓉, 马海涛, 强泽楷, 樊新刚. 基于SA-RSEI模型的盐池县生态质量演变研究[J]. 干旱区研究, 2024, 41(6): 1045-1058. |
[4] | 唐可欣, 郭建斌, 何亮, 陈林, 万龙. 中国旱区GPP时空演变特征及影响因素研究[J]. 干旱区研究, 2024, 41(6): 964-973. |
[5] | 山建安, 朱睿, 尹振良, 杨华庆, 张薇, 方春爽. 基于CMIP6模式的中国西北地区干旱时空变化[J]. 干旱区研究, 2024, 41(5): 717-729. |
[6] | 毛光锐, 赵锦梅, 朱恭, 崔海明, 刘万智. 黄土高原高速公路边坡草本群落植被特征及其与土壤的关系[J]. 干旱区研究, 2024, 41(5): 788-796. |
[7] | 李文秀, 燕振刚. 基于地理探测器的甘肃农牧交错带土地利用时空演化及其驱动机制[J]. 干旱区研究, 2024, 41(4): 590-602. |
[8] | 刘如龙, 赵媛媛, 陈国清, 迟文峰, 刘正佳. 内蒙古黄河流域1990—2020年生境质量评估[J]. 干旱区研究, 2024, 41(4): 674-683. |
[9] | 王鑫盈, 马超, 吕立群, 张岩. 黄土高原不同土地利用类型区浅层滑坡侵蚀特征分析——以蔡家川滑坡事件为例[J]. 干旱区研究, 2024, 41(4): 697-705. |
[10] | 程秋连, 刘杰, 杨治纬, 张天意, 王斌. 独库高速阿尔先沟段雪崩空间分布及因子探测[J]. 干旱区研究, 2024, 41(2): 220-229. |
[11] | 许宁, 李治国, 梁雪悦, 周晓莹. 基于地形梯度的青藏高原冰川分布格局及成因[J]. 干旱区研究, 2024, 41(2): 230-239. |
[12] | 严莉, 曹广超, 康利刚, 刘梦琳, 叶得力. 基于InVEST模型的共和县生境质量时空变化及驱动因素[J]. 干旱区研究, 2024, 41(2): 314-325. |
[13] | 赵雨琪, 魏天兴. 1990—2020年黄土高原典型县域植被覆盖变化及影响因素[J]. 干旱区研究, 2024, 41(1): 147-156. |
[14] | 文妙霞, 何学高, 刘欢, 张婧, 罗晨, 贾丰铭, 王义贵, 胡云云. 基于地理探测器的宁夏草地植被覆被时空分异及驱动因子[J]. 干旱区研究, 2023, 40(8): 1322-1332. |
[15] | 齐润泽, 潘竟虎. 河湟地区生态脆弱性时空演变及影响因素研究[J]. 干旱区研究, 2023, 40(6): 1002-1013. |
|