| [1] |
Mekonnen M M, Hoekstra A Y. Blue water footprint linked to national consumption and international trade is unsustainable[J]. Nature Food, 2020, 1(12): 792-800.
doi: 10.1038/s43016-020-00198-1
pmid: 37128061
|
| [2] |
徐东来, 孙秀秀, 李文良, 等. 自然变化和人类活动影响下区域虚拟水贸易定量分析[J]. 人民黄河, 2023, 45(9): 90-95.
|
|
[Xu Donglai, Sun Xiuxiu, Li Wenliang, et al. Quantitative analysis of virtual water net exports under the impacts of natural changes and human activities[J]. Yellow River, 2023, 45(9): 90-95.]
|
| [3] |
邓光耀, 毛颖. 黄河流域虚拟水贸易核算及影响因素研究[J]. 人民黄河, 2024, 46(4): 68-72, 85.
|
|
[Deng Guangyao, Mao Ying. Study on virtual water trade accounting and its influencing factors in the Yellow River Basin[J]. Yellow River, 2024, 46(4): 68-72, 85.]
|
| [4] |
Hanjra M A, Qureshi M E. Global water crisis and future food security in an era of climate change[J]. Food Policy, 2010, 35(5): 365-377.
|
| [5] |
沈晓梅, 孔千慧, 于欣鑫, 等. 长三角地区农业虚拟水流动格局研究——基于水资源拓展的多地区投入产出分析[J]. 中国农村水利水电, 2023(9): 17-25.
doi: 10.12396/znsd.222415
|
|
[Shen Xiaomei, Kong Qianhui, Yu Xinxin, et al. Research on the pattern of agricultural virtual water flow in Yangtze River Delta: Based on water resource expanded MRIO model[J]. China Rural Water and Hydropower, 2023(9): 17-25.]
doi: 10.12396/znsd.222415
|
| [6] |
孙才志, 张佳亮. 中国与“一带一路”沿线国家农产品贸易的水资源压力效应[J]. 水利水电科技进展, 2023, 43(4): 1-8.
|
|
[Sun Caizhi, Zhang Jialiang. Effects of water resources stress on agricultural trade between China and countries along belt and road[J]. Advances in Science and Technology of Water Resources, 2023, 43(4): 1-8.]
|
| [7] |
Nishad S N, Kumar N. Virtual water trade and its implications on water sustainability[J]. Water Supply, 2022, 22(2): 1704-1715.
|
| [8] |
王宁, 董小刚, 钟耀, 等. 陕西省虚拟水产业配置及省际贸易时空变化[J]. 人民黄河, 2023, 45(3): 66-72.
|
|
[Wang Ning, Dong Xiaogang, Zhong Yao, et al. Temporal and spatial changes in the configuration of the virtual water industry and inter-provincial trade in Shaanxi[J]. Yellow River, 2023, 45(3): 66-72.]
|
| [9] |
洪思扬, 王红瑞, 程涛, 等. 国际及省际贸易视角下的中国虚拟水和隐含能源流通规律分析[J]. 地理科学, 2022, 42(10): 1735-1746.
doi: 10.13249/j.cnki.sgs.2022.10.006
|
|
[Hong Siyang, Wang Hongrui, Cheng Tao, et al. Circulation characteristics of virtual water and embodied energy in China from the perspective of international and inter-provincial trade[J]. Scientia Geographica Sinica, 2022, 42(10): 1735-1746.]
doi: 10.13249/j.cnki.sgs.2022.10.006
|
| [10] |
Gu W, Wang F, Siebert S, et al. The asymmetric impacts of international agricultural trade on water use scarcity, inequality and inequity[J]. Nature Water, 2024, 2(4): 324-336.
|
| [11] |
韩宇平, 李想, 苏潇雅, 等. 基于多区域投入产出模型的京津冀地区虚拟水贸易分析[J]. 华北水利水电大学学报(自然科学版), 2022, 43(5): 45-52.
|
|
[Han Yuping, Li Xiang, Su Xiaoya, et al. Virtual water trade in Beijing-Tianjin-Hebei Region based on multiregional input-output model[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2022, 43(5): 45-52.]
|
| [12] |
王珊珊, 刘小慧. 新发展理念下安徽省虚拟水贸易测算与分析[J]. 黑龙江工程学院学报, 2022, 36(3): 51-58.
|
|
[Wang Shanshan, Liu Xiaohui. Calculation and analysis of virtual water trade in Anhui Province under the new development principles[J]. Journal of Heilongjiang Institute of Technology, 2022, 36(3): 51-58.]
|
| [13] |
刘叶, 张馨戈, 王镇岳. 河南省农产品虚拟水贸易发展水平测度及其驱动因素分析[J]. 华北水利水电大学学报(自然科学版), 2022, 43(4): 29-35.
|
|
[Liu Ye, Zhang Xinge, Wang Zhenyue. Measurement of the development level of virtual water trade of agricultural products in Henan Province and analysis of its driving factors[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2022, 43(4): 29-35.]
|
| [14] |
杨晨, 马育军, 谢婷. 基于粮食作物的广州市虚拟水贸易研究[J]. 水文, 2022, 42(4): 96-100, 107.
|
|
[Yang Chen, Ma Yujun, Xie Ting. Research on virtual water trade based on grain crops in Guangzhou city[J]. Journal of China Hydrology, 2022, 42(4): 96-100, 107.]
|
| [15] |
杨婷婷, 张雪妮, 高翔, 等. 中国粮食省份间流通及对虚拟水土资源的影响[J]. 草业科学, 2022, 39(8): 1686-1697.
|
|
[Yang Tingting, Zhang Xueni, Gao Xiang, et al. Study on inter-provincial grain trade and its impacts on virtual water and soil resources in China[J]. Pratacultural Science, 2022, 39(8): 1686-1697.]
|
| [16] |
谢维维, 马忠. 黄河流域9个省(区)虚拟水流动格局及趋势研究[J]. 人民黄河, 2022, 44(10): 78-83.
|
|
[Xie Weiwei, Ma Zhong. Virtual water flow pattern and trend in the nine provinces of the Yellow River Basin[J]. Yellow River, 2022, 44(10): 78-83.]
|
| [17] |
Li Y, Zhong H, Shan Y, et al. Changes in global food consumption increase GHG emissions despite efficiency gains along global supply chains[J]. Nature Food, 2023, 4(6): 483-495.
doi: 10.1038/s43016-023-00768-z
pmid: 37322300
|
| [18] |
Hekmatnia M, Isanezhad A, Ardakani A F, et al. An attempt to develop a policy framework for the global sustainability of freshwater resources in the virtual water trade[J]. Sustainable Production and Consumption, 2023, 39: 311-325.
|
| [19] |
Gao J, Zhuo L, Liu Y, et al. Efficiency and sustainability of inter-provincial crop-related virtual water transfers in China[J]. Advances in Water Resources, 2020, 138: 103560.
|
| [20] |
Zhang L, Feng S, Zhang E, et al. How does virtual water influence the water stress pattern in Africa? A research perspective from the perspectives of production and trade[J]. Science of the Total Environment, 2024, 946: 174244.
|
| [21] |
Chouchane H, Krol M S, Hoekstra A Y. Virtual water trade patterns in relation to environmental and socioeconomic factors: A case study for Tunisia[J]. Science of the Total Environment, 2018, 613-614: 287-297.
|
| [22] |
Yang H, Wang L, Abbaspour K C, et al. Virtual water trade: An assessment of water use efficiency in the international food trade[J]. Hydrology and Earth System Sciences, 2006, 10(3): 443-454.
|
| [23] |
Liu W, Antonelli M, Kummu M, et al. Savings and losses of global water resources in food-related virtual water trade[J]. WIREs Water, 2019, 6(1): e1320.
|
| [24] |
Liu J, Williams J R, Zehnder A J B, et al. GEPIC-modelling wheat yield and crop water productivity with high resolution on a global scale[J]. Agricultural Systems, 2007, 94(2): 478-493.
|
| [25] |
Shao L, Guan D, Wu Z, et al. Multi-scale input-output analysis of consumption-based water resources: Method and application[J]. Journal of Cleaner Production, 2017, 164: 338-346.
|
| [26] |
Ye Q, Bruckner M, Wang R, et al. A hybrid multi-regional input-output model of China: Integrating the physical agricultural biomass and food system into the monetary supply chain[J]. Resources, Conservation and Recycling, 2022, 177: 105981.
|
| [27] |
Zhao H, Miller T R, Ishii N, et al. Global spatio-temporal change assessment in interregional water stress footprint in China by a high resolution MRIO model[J]. Science of the Total Environment, 2022, 841: 156682.
|
| [28] |
Kastner T, Kastner M, Nonhebel S. Tracing distant environmental impacts of agricultural products from a consumer perspective[J]. Ecological Economics, 2011, 70(6): 1032-1040.
|
| [29] |
Mialyk O, Schyns J F, Booij M J, et al. Water footprints and crop water use of 175 individual crops for 1990-2019 simulated with a global crop model[J]. Scientific Data, 2024, 11(1): 206.
|
| [30] |
Mekonnen M M, Hoekstra A Y. Four billion people facing severe water scarcity[J]. Science Advances, 2016, 2(2): e1500323.
|
| [31] |
Shan Y, Wang X, Wang Z, et al. The pattern and mechanism of air pollution in developed coastal areas of China: From the perspective of urban agglomeration[J]. PLoS One, 2020, 15(9): e023 7863.
|
| [32] |
Song W, Wang C, Chen W, et al. Unlocking the spatial heterogeneous relationship between Per Capita GDP and nearby air quality using bivariate local indicator of spatial association[J]. Resources, Conservation and Recycling, 2020, 160: 104880.
|
| [33] |
Hu Y, Li B, Zhang Z, et al. Farm size and agricultural technology progress: Evidence from China[J]. Journal of Rural Studies, 2022, 93: 417-429.
|
| [34] |
Gao Y, Zhao D, Yu L, et al. Influence of a new agricultural technology extension mode on farmers’ technology adoption behavior in China[J]. Journal of Rural Studies, 2020, 76: 173-183.
|
| [35] |
Khan N, Ray R L, Sargani G R, et al. Current progress and future prospects of agriculture technology: Gateway to sustainable agriculture[J]. Sustainability, 2021, 13(9): 4883.
|
| [36] |
杨春, 韩正清. 农产品虚拟水实证研究——基于中国30个省市区主要农作物生产、消费、贸易数据[J]. 重庆工商大学学报(社会科学版), 2016, 33(3): 25-31.
|
|
[Yang Chun, Han Zhengqing. An empirical study on virtual water for agricultural products——production, consumption and trading data based on main crops of 30 provinces, cities and districts in China[J]. Journal of Chongqing Technology and Business University (Social Science Edition), 2016, 33(3): 25-31.]
|
| [37] |
Anderson R, Bayer P E, Edwards D. Climate change and the need for agricultural adaptation[J]. Curr Opin Plant Biol, 2020, 56: 197-202.
doi: S1369-5266(19)30121-9
pmid: 32057694
|
| [38] |
Fukase E, Martin W. Economic growth, convergence, and world food demand and supply[J]. World Development, 2020, 132: 104954.
|
| [39] |
Piñeiro V, Arias J, Dürr J, et al. A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes[J]. Nature Sustainability, 2020, 3(10): 809-820.
|
| [40] |
Zhang X, Yao G, Vishwakarma S, et al. Quantitative assessment of agricultural sustainability reveals divergent priorities among nations[J]. One Earth, 2021, 4(9): 1262-1277.
|
| [41] |
Chopra R, Magazzino C, Shah M I, et al. The role of renewable energy and natural resources for sustainable agriculture in ASEAN countries: Do carbon emissions and deforestation affect agriculture productivity?[J]. Resources Policy, 2022, 76: 102578.
|
| [42] |
Sridhar A, Balakrishnan A, Jacob M M, et al. Global impact of COVID-19 on agriculture: Role of sustainable agriculture and digital farming[J]. Environmental Science and Pollution Research, 2023, 30(15): 42509-42525.
|
| [43] |
Zhang D, Sial M S, Ahmad N, et al. Water scarcity and sustainability in an emerging economy: A management perspective for future[J]. Sustainability, 2021, 13(1): 144.
|
| [44] |
Mishra V, Thirumalai K, Jain S, et al. Unprecedented drought in south India and recent water scarcity[J]. Environmental research letters, 2021, 16(5): 54007.
|
| [45] |
Miao M, Liu H, Chen J. Factors affecting fluctuations in China’s aquatic product exports to Japan, the USA, South Korea, Southeast Asia, and the EU[J]. Aquaculture International, 2021, 29(6): 2507-2533.
|
| [46] |
Xia W, Chen X, Song C, et al. Driving factors of virtual water in international grain trade: A study for belt and road countries[J]. Agricultural Water Management, 2022, 262: 107441.
|
| [47] |
Wu B, Tian F, Zhang M, et al. Quantifying global agricultural water appropriation with data derived from earth observations[J]. Journal of Cleaner Production, 2022, 358: 131891.
|
| [48] |
Kastner T, Chaudhary A, Gingrich S, et al. Global agricultural trade and land system sustainability: Implications for ecosystem carbon storage, biodiversity, and human nutrition[J]. One Earth, 2021, 4(10): 1425-1443.
|
| [49] |
Erokhin V, Diao L, Du P. Sustainability-related implications of competitive advantages in agricultural value chains: Evidence from central asia—China trade and investment[J]. Sustainability, 2020, 12(3): 1117.
|
| [50] |
朱启荣, 孙雪洁, 杨媛媛. 虚拟水视角下中国农产品进出口贸易节水问题研究[J]. 世界经济研究, 2016, 32(1): 87-98.
|
|
[Zhu Qirong, Sun Xuejie, Yang Yuanyuan. Saving water from China’s agricultural imports & exports based on virtual water[J]. World Economy Studies, 2016, 32(1): 87-98.]
|