[1] |
Li C, Fu B, Wang S, et al. Climate-driven ecological thresholds in China’s drylands modulated by grazing[J]. Nature Sustainability, 2023, 6: 1363-1372.
|
[2] |
O Sungmin, Park S K. Global ecosystem responses to flash droughts are modulated by background climate and vegetation conditions[J]. Communications Earth & Environment, 2024, 5(1): 1-7.
|
[3] |
Yang L, Wylie B K, Tieszen L L, et al. An analysis of relationships among climate forcing and time-integrated NDVI of grasslands over the U.S. Northern and Central Great Plains[J]. Remote Sensing of Environment, 1998, 65: 25-37.
|
[4] |
Ren H, Wen Z, Liu Y, et al. Vegetation response to changes in climate across different climate zones in China[J]. Ecological Indicators, 2023, 155: 110932.
|
[5] |
Jiang L, Jiapaer G, Bao A, et al. Vegetation dynamics and responses to climate change and human activities in Central Asia[J]. Science of the Total Environment, 2017, 599-600: 967-980.
|
[6] |
Sun G, Li L, Li J, et al. Impacts of climate change on vegetation pattern: Mathematical modeling and data analysis[J]. Physics of Life Reviews, 2022, 43: 239-270.
|
[7] |
吴万民, 刘涛, 陈鑫. 西北干旱半干旱区NDVI季节性变化及其影响因素[J]. 干旱区研究, 2023, 40(12): 1969-1981.
|
|
[ Wu Wanmin, Liu Tao, Chen Xin. Seasonal changes of NDVI in the arid and semi-arid regions of Northwest China and its influencing factors[J]. Arid Zone Research, 2023, 40(12): 1969-1981. ]
|
[8] |
裴志林, 曹晓娟, 王冬, 等. 内蒙古植被覆盖时空变化特征及其对人类活动的响应[J]. 干旱区研究, 2024, 41(4): 629-638.
|
|
[ Pei Zhilin, Cao Xiaojuan, Wang Dong, et al. Spatiotemporal variation in vegetation coverage in Inner Mongolia and its response to human activities[J]. Arid Zone Research, 2024, 41(4): 629-638. ]
|
[9] |
赵东颖, 蒙仲举, 孟芮冰, 等. 乌兰布和沙漠风沙入黄段植被覆盖动态变化特征及驱动力[J]. 干旱区研究, 2024, 41(4): 639-649.
|
|
[ Zhao Dongying, Meng Zhongju, Meng Ruibing, et al. Dynamic change characteristics and driving forces of vegetation cover in the Ulan Buhe Desert along the Yellow River[J]. Arid Zone Research, 2024, 41(4): 639-649. ]
|
[10] |
Chen Z, Wang W, Fu J. Vegetation response to precipitation anomalies under different climatic and biogeographical conditions in China[J]. Scientific Reports, 2020, 10: 830.
doi: 10.1038/s41598-020-57910-1
pmid: 31965046
|
[11] |
Zhao J, Huang S, Huang Q, et al. Time-lagged response of vegetation dynamics to climatic and teleconnection factors[J]. Catena, 2020, 189: 104474.
|
[12] |
Guo L, Cheng J, Luedeling E, et al. Critical climate periods for grassland productivity on China’s Loess Plateau[J]. Agricultural and Forest Meteorology, 2017, 233: 101-109.
|
[13] |
Wei X, He W, Zhou Y, et al. Global assessment of lagged and cumulative effects of drought on grassland gross primary production[J]. Ecological Indicators, 2022, 136: 108646.
|
[14] |
Wang X, Cheng H, Li H, et al. Key driving forces of desertification in the Mu Us Desert, China[J]. Scientific Reports, 2017, 7(1): 3933.
|
[15] |
刘如龙, 赵媛媛, 陈国清, 等. 内蒙古黄河流域1990—2020年生境质量评估[J]. 干旱区研究, 2024, 41(4): 674-683.
|
|
[ Liu Rulong, Zhao Yuanyuan, Chen Guoqing, et al. Assessment of habitat quality in the Yellow River Basin in Inner Mongolia from 1990 to 2020[J]. Arid Zone Research, 2024, 41(4): 674-683. ]
|
[16] |
Xiu L, Yan C, Li X, et al. Monitoring the response of vegetation dynamics to ecological engineering in the Mu Us Sandy Land of China from 1982 to 2014[J]. Environmental Monitoring and Assessment, 2018, 190: 543.
doi: 10.1007/s10661-018-6931-9
pmid: 30136179
|
[17] |
Sun Z, Mao Z, Yang L, et al. Impacts of climate change and afforestation on vegetation dynamic in the Mu Us Desert, China[J]. Ecological Indicators, 2021, 129: 108020.
|
[18] |
Gao W, Zheng C, Liu X, et al. NDVI-based vegetation dynamics and their responses to climate change and human activities from 1982 to 2020: A case study in the Mu Us Sandy Land, China[J]. Ecological Indicators, 2022, 137: 108745.
|
[19] |
Feng X, Li J, Cheng W, et al. Evaluation of AMSRE retrieval by detecting soil moisture decrease following massive dryland re-vegetation in the Loess Plateau, China[J]. Remote Sensing of Environment, 2017, 196: 253-264.
|
[20] |
Wang X, Wang B, Xu X, et al. Spatial and temporal variations in surface soil moisture and vegetation cover in the Loess Plateau from 2000 to 2015[J]. Ecological Indicators, 2018, 95: 320-330.
|
[21] |
Zhang M, Wu X. The rebound effects of recent vegetation restoration projects in Mu Us Sandy Land of China[J]. Ecological Indicators, 2020, 113: 106228.
|
[22] |
杨梅焕, 靳小燕, 王涛. 毛乌素沙地植被物候变化及其对气候变化的响应[J]. 水土保持通报, 2022, 42(2): 242-249.
|
|
[ Yang Meihuan, Jin Xiaoyan, Wang Tao. Vegetation phenology change of Mu Us Sandy Land and its response to climate change[J]. Bulletin of Soil and Water Conservation, 2022, 42(2): 242-249. ]
|
[23] |
雷雅凯. 毛乌素沙地油蒿种群格局研究[D]. 北京: 中国林业科学研究院, 2012.
|
|
[ Lei Yakai. Spatial Pattern of Artemisia Ordosica Population in Mu Us Sand Land, in Inner Mongolia[D]. Beijing: Chinese Academy of Forestry, 2012. ]
|
[24] |
牛振国, 李保国, 张凤荣, 等. 参考作物蒸散量的分布式模型[J]. 水科学进展, 2002, 13(3): 303-307.
|
|
[ Niu Zhenguo, Li Baoguo, Zhang Fengrong, et al. A distributed model of reference evapotranspiration based on the DEM[J]. Advances in Water Science, 2002, 13(3): 303-307. ]
|
[25] |
朱娅坤, 秦树高, 张宇清, 等. 毛乌素沙地植被物候动态及其对气象因子变化的响应[J]. 北京林业大学学报, 2018, 40(9): 98-106.
|
|
[ Zhu Yakun, Qin Shugao, Zhang Yuqing, et al. Vegetation phenology dynamic and its responses to meteorological factor changes in the Mu Us Desert of northern China[J]. Journal of Beijing Forestry University, 2018, 40(9): 98-106. ]
|
[26] |
杨梅焕, 李扬, 王涛, 等. 毛乌素沙地植被水分利用效率时空变化特征及其对水热条件的响应[J]. 测绘通报, 2023(7): 44-50, 79.
doi: 10.13474/j.cnki.11-2246.2023.0199
|
|
[ Yang Meihuan, Li Yang, Wang Tao, et al. Spatial and temporal change of water use efficiency and its response to air temperature and precipitation in the Mu Us Sandy Land[J]. Bulletin of Surveying and Mapping, 2023(7): 44-50, 79. ]
doi: 10.13474/j.cnki.11-2246.2023.0199
|
[27] |
高吉喜, 史园莉, 张宏伟, 等. 中国区域250米归一化植被指数数据集(2000—2022)[DB/OL]. 国家青藏高原数据中心, 2023.
|
|
[ Gao Jixi, Shi Yuanli, Zhang Hongwei, et al. China regional 250 m normalized difference vegetation index data set (2000-2022)[DB/OL]. National Tibetan Plateau/Third Pole Environment Data Center, 2023. ]
|
[28] |
彭守璋. 中国1 km分辨率逐月降水量数据集(1901-2022)[DB/OL]. 国家青藏高原数据中心, 2020.
|
|
[ Peng Shouzhang. 1-km monthly precipitation dataset for China (1901-2022)[DB/OL]. National Tibetan Plateau/Third Pole Environment Data Center, 2020. ]
|
[29] |
Sen P K. Estimates of the regression coefficient based on Kendall’s tau[J]. Journal of the American Statistical Association, 1968, 63: 1379-1389.
|
[30] |
Hamed K H, Rao A R. A modified Mann-Kendall trend test for autocorrelated data[J]. Journal of Hydrology, 1998, 204(1-4): 182-196.
|
[31] |
Pearson K. Notes on the history of correlation[J]. Biometrika, 1920, 13(1): 25-45.
|
[32] |
Wu D, Zhao X, Liang S, et al. Time-lag effects of global vegetation responses to climate change[J]. Global Change Biology, 2015, 21: 3520-3531.
doi: 10.1111/gcb.12945
pmid: 25858027
|
[33] |
赵东升, 高璇, 吴绍洪, 等. 基于自然分区的1960—2018年中国气候变化特征[J]. 地球科学进展, 2020, 35(7): 750-760.
|
|
[ Zhao Dongsheng, Gao Xuan, Wu Shaohong, et al. Trend of climate variation in China from 1960 to 2018 based on natural regionalization[J]. Advances in Earth Science, 2020, 35(7): 750-760. ]
|
[34] |
Miao L, Moore J C, Zeng F, et al. Footprint of research in desertification management in China[J]. Land Degradation & Development, 2015, 26(5): 450-457.
|
[35] |
许冬梅, 刘彩凤, 谢应忠, 等. 毛乌素沙地南缘生态过渡带植被物种多样性的研究[J]. 干旱区资源与环境, 2010, 24(3): 153-157.
|
|
[ Xu Dongmei, Liu Caifeng, Xie Yingzhong, et al. Studies on species diversity in southern ecotone of Mu Us Sandy Land[J]. Journal of Arid Land Resources and Environment, 2010, 24(3): 153-157. ]
|
[36] |
Propastin P A, Kappas M, Muratova N R. Inter-annual changes in vegetation activities and their relationship to temperature and precipitation in Central Asia from 1982 to 2003[J]. Journal of Environmental Informatics, 2008, 12: 75-87.
|
[37] |
王祎宸, 贺洁, 何亮, 等. 黄河流域2001—2020年植被物候及其对气候变化的响应[J]. 生态学报, 2024, 44(2): 844-857.
|
|
[ Wang Yichen, He Jie, He Liang, et al. Vegetation phenology and its response to climate change in the Yellow River Basin from 2001 to 2020[J]. Acta Ecologica Sinica, 2024, 44(2): 844-857. ]
|