Arid Zone Research ›› 2021, Vol. 38 ›› Issue (3): 867-874.doi: 10.13866/j.azr.2021.03.28
• Ecology and Environment • Previous Articles Next Articles
ZHANG Anning(),LIU Rentao(),CHEN Wei,CHANG Haitao,JI Xueru
Received:
2020-09-01
Revised:
2020-11-16
Online:
2021-05-15
Published:
2021-06-17
Contact:
Rentao LIU
E-mail:nxuzan@126.com;nxuliu2012@126.com
ZHANG Anning,LIU Rentao,CHEN Wei,CHANG Haitao,JI Xueru. Effects of climatic factors on litter decomposition and soil fauna in arid regions[J].Arid Zone Research, 2021, 38(3): 867-874.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
The effect of climate change on the litter decomposition in semi-arid and arid ecosystems"
研究样地 | 年均温/℃ | 年降雨量/mm | 气候带 | 研究方法 | 研究结果 |
---|---|---|---|---|---|
科尔沁沙地 | 6.0 | 343 | 半干旱区 | 增温:灯光加热 | 枯落物CO2释放速率与温度呈显著正相关且在40 ℃时,枯落物CO2释放速率达到最高[ |
毛乌素沙地 | 8.3 | 292 | 半干旱区 | 增温:开顶箱模拟增温 | 增温可能缓解干旱-半干旱区植物枯落物分解,并且温度对枯落物分解的抑制作用与分解时间和枯落物类型有关[ |
锡林郭勒草原 | 4.0 | 295 | 半干旱区 | 增温:海拔梯度代替气候变化 | 温度升高2.7 ℃,羊草和大针茅枯落物分解率提高35.83%和6.68%[ |
科罗拉多高原 | 14.4 | 241 | 半干旱区 | 增温:红外线灯光加热 | 温度升高2 ℃没有显著改变凋落物质量损失率,但环境变化影响了枯落物分解过程[ |
科尔沁沙地 | 6.0 | 343 | 半干旱区 | 降雨:自然降雨,减雨30%,减雨50% | 降雨减少枯落物分解率和氮磷的归还[ |
古尔班通古特 沙漠 | 4.0 | 150 | 干旱区 | 降雨:自然降雨,冬春增雪,夏季增雨 | 季节性短暂降雨增加对荒漠区枯落物分解无显著影响[ |
纳米布沙漠 | 10.0 | 75 | 干旱区 | 降雨:降雨季节变化 | 在干旱期,枯落物质量损失率为0%~16.7%;在湿润期,枯落物质量损失率为64.7%~97.2%。降雨是纳米布沙漠枯落物分解的最主要因素[ |
内蒙古荒漠草原 | 3.4 | 280 | 半干旱区 | 降雨:自然降雨,减雨30%,增雨30% | 增减雨将显著改变植被根系的分解速率,首先影响根系的基质质量,进而影响根系质量残留率[ |
[1] | Fu S, Zou X, Coleman D. Highlights and perspectives of soil biology and ecology research in China[J]. Soil Biology and Biochemistry, 2009,42:868-876. |
[2] | 张丹桔, 张健, 杨万勤, 等. 一个年龄序列巨桉人工林植物和土壤生物多样性[J]. 生态学报, 2013,33(13):3947-3962. |
[ Zhang Danji, Zhang Jian, Yang Wanqin, et al. Plant’s and soil organism’s diversity across a range of Eucalyptus grandis plantation ages[J]. Acta Ecologica Sinica, 2013,33(13):3947-3962. ] | |
[3] |
Atkinson R B, Cairns J. Plant decomposition and litter accumulation in depressional wetlands, functional performance of two wetland age classes that were created via excavation[J]. Wetlands, 2001,21:354-362.
doi: 10.1672/0277-5212(2001)021[0354:PDALAI]2.0.CO;2 |
[4] | 张安宁, 刘任涛, 刘佳楠, 等. 干旱风沙区柠条枯落物对土壤节肢动物群落的影响[J]. 生态学杂志, 2020,39(7):2383-2391. |
[ Zhang Anning, Liu Rentao, Liu Jianan, et al. Effects of Caragana korshinskii litter on soil arthropod community in desertified region[J]. Chinese Journal of Ecology, 2020,39(7):2383-2391. ] | |
[5] |
Cameron W, Franz B S, Franco W, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(14):5266-5270.
doi: 10.1073/pnas.1320054111 pmid: 24639507 |
[6] |
Jan Frouz. Effects of soil macro-and mesofauna on litter decomposition and soil organic matter stabilization[J]. Geoderma, 2017,332(15):161-172.
doi: 10.1016/j.geoderma.2017.08.039 |
[7] |
Plaza C, Zaccone C, Sawicka K, et al. Soil resources and element stocks in drylands to face global issues[J]. Scientific Reports, 2018,8(1):13788.
doi: 10.1038/s41598-018-32229-0 |
[8] |
Van den Hoogen J, Geisen S, Routh D, et al. Soil nematode abundance and functional group composition at a global scale[J]. Nature, 2019,572(7768):194-198.
doi: 10.1038/s41586-019-1418-6 pmid: 31341281 |
[9] |
Slade E M, Riutta T. Interacting effects of leaf litter species and macrofauna on decomposition in different litter environments[J]. Basic and Applied Ecology, 2012,13:423-431.
doi: 10.1016/j.baae.2012.06.008 |
[10] |
Mathieu S, Adriane A, Estelle F, et al. Increasing temperature and decreasing specific leaf area amplify centipede predation impact on Collembola[J]. European Journal of Soil Biology, 2018,89:9-13.
doi: 10.1016/j.ejsobi.2018.08.002 |
[11] | 张慧, 武海涛. 气候变暖对土壤动物群落结构的影响机制[J]. 生态学杂志, 2020,39(2):655-664. |
[ Zhang Hui, Wu Haitao. Research progresses in effects of climate warming on soil fauna community structure[J]. Chinese Journal of Ecology, 2020,39(2):655-664. ] | |
[12] |
Berdugo M, Delgado-Baquerizo M, Soliveres S, et al. Global ecosystem thresholds driven by aridity[J]. Science, 2020,367(6479):787-790.
doi: 10.1126/science.aay5958 |
[13] |
Veldhuis M P, Laso F J, Han O, et al. Termites promote resistance of decomposition to spatiotemporal variability in rainfall[J]. Ecology, 2017,98(2):467-477.
doi: 10.1002/ecy.1658 pmid: 27861770 |
[14] | 刘佳楠, 刘任涛, 赵娟, 等. 沙地柠条锦鸡儿灌丛枯落叶输入特征及对土壤理化性质的影响[J]. 干旱区资源与环境, 2018,32(11):169-175. |
[ Liu Jianan, Liu Rentao, Zhao Juan, et al. Leaflitter input of Caragana kornshinskii and its effect on soil properties in desertified grassland[J]. Journal of Arid Land Resources and Environment, 2018,32(11):169-175. ] | |
[15] |
Eisenhauer N, Herrmann S, Hines J, et al. The dark side of animal phenology[J]. Trends in Ecology & Evolution, 2018,33(12):898-901.
doi: 10.1016/j.tree.2018.09.010 |
[16] | 孟庆涛, 李玉霖, 赵学勇, 等. 科尔沁沙地不同环境条件下植物叶凋落物CO2释放研究[J]. 干旱区研究, 2008,25(4):519-524. |
[ Meng Qingtao, Li Yulin, Zhao Xueyong, et al. Study on CO2 release of leaf litters in different environment conditions in the Horqin Sandy land[J]. Arid Zone Research, 2008,25(4):519-524. ] | |
[17] |
Chuckran P F, Reibold R, Throop H L, et al. Multiple mechanisms determine the effect of warming on plant litter decomposition in a dryland[J]. Soil Biology and Biochemistry, 2020,145(1):107799.
doi: 10.1016/j.soilbio.2020.107799 |
[18] | 牟钰, 贾昕, 郑甲佳, 等. 毛乌素沙地油蒿枯落物分解对增温的响应[J]. 北京林业大学学报, 2020,42(6):134-141. |
[ Mu Yu, Jia Xin, Zheng Jiajia, et al. Response of litter decomposition to warming of Artemisia ordosica in Mu Us Desert of northwestern China[J]. Journal of Beijing Forestry University, 2020,42(6):134-141. ] | |
[19] | 王其兵, 李凌浩, 白永飞, 等. 模拟气候变化对3种草原植物群落混合凋落物分解的影响[J]. 植物生态学报, 2000,24(6):674-679. |
[ Wang Qibing, Li Linghao, Bai Yongfei, et al. Effects of simulated climate change on the decomposition of mixed litter in three steppe communities[J]. Chinese Journal of Plant Ecology, 2000,24(6):519-524. ] | |
[20] |
Becker J N, Kuzyakov Y. Teatime on Mount Kilimanjaro: Assessing climate and land-use effects on litter decomposition and stabilization using the Tea Bag Index[J]. Land Degradation & Development, 2018,29(8):2321-2329.
doi: 10.1002/ldr.v29.8 |
[21] | Wagg C, Bender S F, Widmer F, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111:5266-5270. |
[22] | 霍利霞, 红梅, 赵巴音那木拉, 等. 氮沉降和降雨变化对荒漠草原凋落物分解的影响[J]. 生态学报, 2019,39(6):2139-2146. |
[ Huo Lixia, Hong Mei, Zhao Bayinnamula, et al. Effects of increased nitrogen deposition and changing rainfall patterns on litter decomposition in a desert grassland[J]. Acta Ecologica Sinica, 2019,39(6):2139-2146. ] | |
[23] | 陈婷, 郗敏, 孔范龙, 等. 枯落物分解及其影响因素[J]. 生态学杂志, 2016,35(7):1927-1935. |
[ Chen Ting, Xi Min, Kong Fanlong, et al. A review on litter decomposition and influence factors[J]. Chinese Journal of Ecology, 2016,35(7):1927-1935. ] | |
[24] | 叶贺, 红梅 赵巴音那木拉, 等. 水氮控制对短花针茅荒漠草原根系分解的影响[J]. 应用与环境生物学报, 2020,26(5):1169-1175. |
[ Ye He, Hong Mei, Zhao Bayinnamula, et al. Effects of water and nitrogen treatments on root decomposition of Stipa breviflora desert steppe[J]. Chinese Journal of Applied and Environmental Biology, 2020,26(5):1169-1175. ] | |
[25] | 侯玲玲, 孙涛, 毛子军, 等. 小兴安岭不同林龄天然次生白桦林凋落物分解及养分变化[J]. 植物研究, 2012,32(4):492-496. |
[ Hou Lingling, Sun Tao, Mao Zijun, et al. Litter decomposition and nutrient dynamic of Betula platyphylla secondary forest with different stand ages in Xiaoxing’an Mountains[J]. Bulletin of Botanical Research, 2012,32(4):492-496. ] | |
[26] | 和润莲, 陈亚梅, 邓长春, 等. 雪被期川西高山林线交错带两种地被物凋落物分解与土壤动物多样性[J]. 应用生态学报, 2015,26(3):723-731. |
[ He Runlian, Chen Yamei, Deng Changchun, et al. Litter decomposition and soil faunal diversity of two understory plant debris in the alpine timberline ecotone of western Sichuan in a snow cover season[J]. Chinese Journal of Applied Ecology, 2015,26(3):723-731. ] | |
[27] |
Jiang Y F, Yin X Q, Wang F B. The influence of litter mixing on decomposition and soil fauna assemblages in a Pinus koraiensis mixed broad-leaved forest of the Changbai Mountains, China[J]. European Journal of Soil Biology, 2013,55:28-39.
doi: 10.1016/j.ejsobi.2012.11.004 |
[28] | 谢尧, 赵琼, 李炎真, 等. 干旱化对樟子松固沙林氮磷循环的影响[J]. 生态学杂志, 2019,38(12):3593-3600. |
[ Xie Yao, Zhao Qiong, Li Yanzhen, et al. Effects of aridification on nitrogen and phosphorus cycles in a Pinus sylvestis var. mongolica sand-fixation plantation[J]. Chinese Journal of Ecology, 2019,38(12):3593-3600. ] | |
[29] |
Robinson C H, Wookey P A, Parsons A N, et al. Responses of plant litter decomposition and nitrogen mineralisation to simulated environmental change in a high arctic polar semi-desert and a subarctic dwarf shrub heath[J]. Oikos, 1995,74(3):503-512.
doi: 10.2307/3545996 |
[30] |
Aerts R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship[J]. Oikos, 1997,79(3):439-449.
doi: 10.2307/3546886 |
[31] | 赵庆云, 张武, 王式功, 等. 西北地区东部干旱-半干旱区极端降水事件的变化[J]. 中国沙漠, 2005,25(6):112-117. |
[ Zhao Qingyun, Zhang Wu, Wang Shigong, et al. Change of extreme precipitation events in arid and semi-arid regions in the east of Northwest China[J]. Journal of Desert Research, 2005,25(6):112-117. ] | |
[32] |
Schwinning S, Sala O E. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems[J]. Oecologia, 2004,141(2):211-220.
pmid: 15034778 |
[33] |
Pucheta E, Llanos M, Meglioli C, et al. Litter decomposition in a sandy Monte desert of western Argentina: Influences of vegetation patches and summer rainfall[J]. Austral Ecology, 2006,31(7):808-816.
doi: 10.1111/aec.2006.31.issue-7 |
[34] |
Jacobson K M, Jacobson P J. Rainfall regulates decomposition of buried cellulose in the Namib Desert[J]. Journal of Arid Environments, 1998,38(4):571-583.
doi: 10.1006/jare.1997.0358 |
[35] |
Moorhead D L, Callaghan T. Effects of increasing ultraviolet B radiation on decomposition and soil organic matter dynamics: A synjournal and modelling study[J]. Biology and Fertility of Soils, 1994,18(1):19-26.
doi: 10.1007/BF00336439 |
[36] | 周丽, 李彦, 唐立松, 等. 光降解在凋落物分解中的作用[J]. 生态学杂志, 2011,30(9):2045-2052. |
[ Zhou Li, Li Yan, Tang Lisong, et al. Roles of photodegradation in litter decomposition[J]. Chinese Journal of Ecology, 2011,30(9):2045-2052. ] | |
[37] | 黄刚, 周丽, 唐立松, 等. 荒漠植物凋落物光降解特征随降水梯度的变化[J]. 生态学杂志, 2013,32(10):2574-2582. |
[ Huang Gang, Zhou Li, Tang Lisong, et al. Photodegradation of plant litter in a temperate desert along a precipitation gradient[J]. Chinese Journal of Ecology, 2013,32(10):2574-2582. ] | |
[38] | 张慧玲, 宋新章, 哀建国, 等. 增强紫外线-B辐射对凋落物分解的影响研究综述[J]. 浙江林学院学报, 2010,27(1):134-142. |
[ Zhang Huiling, Song Xinzhang, Ai Jianguo, et al. A review of UV-B radiation and its influence on litter decomposition[J]. Journal of Zhejiang A & F University, 2010,27(1):134-142. ] | |
[39] |
Wu T, Su F, Han H, et al. Responses of soil microarthropods to warming and increased precipitation in a semiarid temperate steppe[J]. Applied Soil Ecology, 2014,84:200-207.
doi: 10.1016/j.apsoil.2014.07.003 |
[40] | 殷秀琴, 仲伟彦, 王海霞, 等. 小兴安岭森林落叶分解与土壤动物的作用[J]. 地理研究, 2002,21(6):689-699. |
[ Yin Xiuqin, Zhong Weiyan, Wang Haixia, et al. Decomposition of forest defoliation and role of soil animals in Xiao Hinggan Mountains[J]. Geographical Research, 2002,21(6):689-699. ] | |
[41] |
Bokhorst S, Convey P, Huiskes A, et al. Dwarf shrub and grass vegetation resistant to long-term experimental warming while microarthropod abundance declines on the Falkland Islands[J]. Austral Ecology, 2017,42(8):984-994.
doi: 10.1111/aec.2017.42.issue-8 |
[42] | Huang Y M, Zhang J, Yang W Q, et al. Response of soil faunal community to simulated understory plant loss in the subalpine coniferous plantation of western Sichuan[J]. Acta Ecologica Sinica, 2010,30(8):2018-2025. |
[43] |
Jean-François D, Tanya H I. The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change[J]. Biological Reviews of the Cambridge Philosophical Society, 2010,85(4):881-895.
doi: 10.1111/j.1469-185X.2010.00138.x pmid: 20412191 |
[44] | 德海山, 红梅, 赵巴音那木拉, 等. 模拟增温、施氮对荒漠草原土壤中小型动物群落的影响[J]. 干旱区资源与环境, 2016,30(6):122-128. |
[ De Haishan, Hong Mei, Zhao Bayinnamula, et al. Effect of simulated warming and N addition on soil mesofauna community in desert steppe of Inner Mongolia[J]. Journal of Arid Land Resources and Environment, 2016,30(6):122-128. ] | |
[45] | Koltz A M, Classen A T, Wright J P. Warming reverses top-down effects of predators on belowground ecosystem function in Arctic tundra[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018,115(32):7541-7549. |
[46] | Neher D A, Weicht T R, Moorhead D L, et al. Elevated CO2 alters functional attributes of nematode communities in forest soils[J]. Functional Ecology, 2004,18(4):37-44. |
[47] |
Dijkstra F A, Augustine D J, Brewer P, et al. Nitrogen cycling and water pulses in semiarid grasslands: Are microbial and plant processes temporally asynchronous?[J]. Oecologia, 2012,170(3):799-808.
doi: 10.1007/s00442-012-2336-6 pmid: 22555358 |
[48] |
Jenerette G D, Chatterjee A. Soil metabolic pulses: Water, substrate, and biological regulation[J]. Ecology, 2012,93(5):959-966.
pmid: 22764482 |
[49] |
Wang S J, Ruan H H, Wang B, et al. Effects of soil microarthropods on plant litter decomposition across an elevation gradient in the Wuyi Mountains[J]. Soil Biology and Biochemistry, 2009,41(5):891-897.
doi: 10.1016/j.soilbio.2008.12.016 |
[50] |
Kaneda S, Kaneko N. Influence of Collembola on nitrogen mineralization varies with soil moisture content[J]. Soil Science and Plant Nutrition, 2011,57(1):40-49.
doi: 10.1080/00380768.2010.551107 |
[51] |
Blankinship J C, Niklaus P A, Hungate B A. A meta-analysis of responses of soil biota to global change[J]. Oecologia, 2011,165(3):553-565.
doi: 10.1007/s00442-011-1909-0 pmid: 21274573 |
[52] | 刘继亮, 李锋瑞, 刘七军, 等. 黑河中游干旱荒漠地面节肢动物群落季节变异规律[J]. 草业学报, 2010,19(5):161-169. |
[ Liu Jiliang, Li Fengrui, Liu Qijun, et al. Seasonal variation of ground dwelling arthropod communities in an arid desert of the middle Heihe River basin[J]. Acta Prataculturae Sinica, 2010,19(5):161-169. ] | |
[53] | Landesman W J, Treonis A M, Dighton J. Effects of a one-year rainfall manipulation on soil nematode abundances and community composition[J]. Pedobiologia-International Journal of Soil Biology, 2010,54(2):87-91. |
[54] | Hunt H W, Coleman D C, Ingham E R, et al. The detrital food web in a shortgrass prairie[J]. Biology and Fertility of Soils, 1987,3(1):57-68. |
[55] |
Nieminen J K, Setl H. Influence of carbon and nutrient additions on a decomposer food chain and the growth of pine seedlings in microcosms-ScienceDirect[J]. Applied Soil Ecology, 2001,17(3):189-197.
doi: 10.1016/S0929-1393(01)00139-1 |
[56] | Hooper D U, Johnson L. Nitrogen limitation in dryland ecosystems: Responses to geographical and temporal variation in precipitation[J]. Biogeochemistry, 1999,46:247-293. |
[57] |
Coleman D C. From peds to paradoxes: Linkages between soil biota and their influences on ecological processes[J]. Soil Biology and Biochemistry, 2008,40(2):271-289.
doi: 10.1016/j.soilbio.2007.08.005 |
[58] |
Wu P F, Wang C T. Differences in spatiotemporal dynamics between soil macrofauna and mesofauna communities in forest ecosystems: The significance for soil fauna diversity monitoring[J]. Geoderma, 2019,337(25):266-272.
doi: 10.1016/j.geoderma.2018.09.031 |
[59] | 美丽, 红梅, 赵巴音那木拉, 等. 水氮控制对荒漠草原中小型土壤动物群落的影响[J]. 西北农林科技大学学报(自然科学版), 2018,46(4):75-84. |
[ Mei Li, Hong Mei, Zhao Bayinnamula, et al. Effect of water and N treatment on meso-and micro-fauna communities in soil of desert steppe[J]. Journal of Northwest A&F University (Natural Science Edition), 2018,46(4):75-84. ] | |
[60] | Liu R, Steinberger Y. Seasonal distribution and diversity of ground-active arthropods between shrub microhabitats in the Negev Desert, Israel[J]. Arid Land Research & Management, 2017,32:91-110. |
[61] | 刘任涛, 郗伟华, 朱凡. 宁夏荒漠草原地面节肢动物群落组成及季节动态特征[J]. 草业学报, 2016,25(6):126-135. |
[ Liu Rentao, Xi Weihua, Zhu Fan. Community composition and seasonal dynamics of ground-dwelling arthropods in the desertified steppe of Ningxia[J]. Acta Prataculturae Sinica, 2016,25(6):126-135. ] | |
[62] | Alejandro D, Canepuccia, Cicchino A, et al. Differential responses of marsh arthropods to rainfall-induced habitat loss[J]. Zoological Studies, 2009,48(2):174-183. |
[63] | 吴福忠, 谭波. 森林凋落物分解过程与土壤动物的相互关系研究进展[J]. 四川农业大学学报, 2018,36(5):569-575. |
[ Wu Fuzhong, Tan Bo. A review on the interactions between soil fauna and forest litter decomposition[J]. Journal of Sichuan Agricultural University, 2018,36(5):569-575. ] | |
[64] | 严珺, 吴纪华. 植物多样性对土壤动物影响的研究进展[J]. 土壤, 2018,50(2):231-238. |
[ Yan Jun, Wu Jihua. Study advances in plant diversity effects on soil fauna[J]. Soils, 2018,50(2):231-238. ] | |
[65] | 王文君, 杨万勤, 谭波, 等. 四川盆地亚热带常绿阔叶林不同物候期凋落物分解与土壤动物群落结构的关系[J]. 生态学报, 2013,33(18):5737-5750. |
[ Wang Wenjun, Yang Wanqin, Tan Bo, et al. The dynamics of soil fauna community during litter decomposition at different phenological stages in the subtropical evergreen broad-leaved forests in Sichuan basin[J]. Acta Ecologica Sinica, 2013,33(18):5737-5750. ] | |
[66] | 谌亚, 杨万勤, 吴福忠, 等. 川西亚高山/高山森林土壤线虫多样性[J]. 应用生态学报, 2017,28(10):3360-3368. |
[ Kan Ya, Yang Wanqin, Wu Fuzhong, et al. Diversity of soil nematode communities in the subalpine and alpine forests of western Sichuan, China[J]. Chinese Journal of Applied Ecology, 2017,28(10):3360-3368. ] | |
[67] | 谭波. 季节性冻融对川西亚高山/高山森林土壤动物群落的影响[D]. 成都: 四川农业大学, 2010. |
[ Tan Bo. Soil Fauna Community in the Subalpine/Alpine Forests of Western Sichuan as Affected by Seasonal Freeze-thas[D]. Chengdu: Sichuan Agricultural University, 2010. ] | |
[68] |
Goncharov A A, Khramova E Y, Tiunov A V. Spatial variations in the trophic structure of soil animal communities in boreal forests of Pechora-Ilych Nature Reserve[J]. Eurasian Soil Science, 2014,47(5):441-448.
doi: 10.1134/S106422931405007X |
[69] |
Sanchez B C, Parmenter R R. Patterns of shrub-dwelling arthropod diversity across a desert shrubland-grassland ecotone: A test of island biogeographic theory[J]. Journal of Arid Environments, 2002,50(2):247-265.
doi: 10.1006/jare.2001.0920 |
[70] |
Holmstrup M, Damgaard C, Schmidt I K, et al. Long-term and realistic global change manipulations had low impact on diversity of soil biota in temperate heathland[J]. Scientific Reports, 2017,7:41388.
doi: 10.1038/srep41388 pmid: 28120893 |
[71] |
Holmstrup M, Maraldo K, Krogh P H. Combined effect of copper and prolonged summer drought on soil Microarthropods in the field[J]. Environmental Pollution, 2007,146(2):525-533.
doi: 10.1016/j.envpol.2006.07.013 |
[72] |
Daghighi E, Filser J, Koehler H, et al. Long-term succession of Collembola communities in relation to climate change and vegetation[J]. Pedobiologia, 2017,64:25-38.
doi: 10.1016/j.pedobi.2017.06.001 |
[73] | Warren M W, Zou X. Soil macrofauna and litter nutrients in three tropical tree plantations on a disturbed site in Puerto Rico[J]. Forest Ecology & Management, 2002,170(1-3):161-171. |
[74] |
Liu R T, Zhu F, Steinberger Y. Effectiveness of afforested shrub plantation on ground-active arthropod communities and trophic structure in desertified regions[J]. Catena, 2015,125(5):1-9.
doi: 10.1016/j.catena.2014.09.018 |
[75] | David J F, David J F. The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change[J]. Biological Reviews, 2010,85(4):881-895. |
[76] |
Robinson J V. The effect of architectural variation in habitat on a spider community: An experimental field study[J]. Ecology, 1981,62(10):73-80.
doi: 10.2307/1936670 |
[77] |
Holmstrup M, Ehlers B K, Slotsbo S, et al. Functional diversity of Collembola is reduced in soils subjected to short-term, but not long-term, geothermal warming[J]. Functional Ecology, 2018,32(5):1304-1316.
doi: 10.1111/fec.2018.32.issue-5 |
[78] | 査同刚, 张志强, 孙阁, 等. 凋落物分解主场效应及其土壤生物驱动[J]. 生态学报, 2012,32(24):7991-8000. |
[ Zha Tonggang, Zhang Zhiqiang, Sun Ge, et al. Home-field advantage of litter decomposition and its soil biological driving mechanism: A review[J]. Acta Ecologica Sinica, 2012,32(24):7991-8000. ] | |
[79] |
Gholz H L, Wedin D A, et al. Long-term dynamics of pine and hardwood litter in contrasting environments: Toward a global model of decomposition[J]. Global Change Biology, 2000,6(7):751-765.
doi: 10.1046/j.1365-2486.2000.00349.x |
[80] |
Nielsen U N, Osler G H R, Campbell C D, et al. The influence of vegetation type, soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale[J]. Journal of Biogeography, 2010,37(7):1317-1328.
doi: 10.1111/jbi.2010.37.issue-7 |
[81] |
Kardol P, Reynolds W N, Norby R J, et al. Climate change effects on soil microarthropod abundance and community structure[J]. Applied Soil Ecology, 2011,47(1):37-44.
doi: 10.1016/j.apsoil.2010.11.001 |
[1] | ZHAO Yuqi, WEI Tianxing. Changes in vegetation cover and influencing factors in typical counties of the Loess Plateau from 1990 to 2020 [J]. Arid Zone Research, 2024, 41(1): 147-156. |
[2] | HU Guanglu,TAO Hu,JIAO Jiao,BAI Yuanru,CHEN Haizhi,MA Jin. Runoff trend and attribution analysis of the Zhengyi Gorge in the middle reaches of the Heihe River [J]. Arid Zone Research, 2023, 40(9): 1414-1424. |
[3] | ZHOU Xiaodong, CHANG Shunli, WANG Guanzheng, ZHANG Yutao, YU Shulong, ZHANG Tongwen. Radial growth response of Picea schrenkiana to climate change in the middle section of the northern slope of the Tianshan Mountains [J]. Arid Zone Research, 2023, 40(8): 1215-1228. |
[4] | MENG Chengfeng, ZHONG Tao, ZHENG Jianghua, WANG Nan, LIU Zexuan, REN Xiangyuan. Analysis of temporal and spatial characteristics and driving forces of Kunlun glacial lakes [J]. Arid Zone Research, 2023, 40(7): 1094-1106. |
[5] | ZHAO Yanfen, PAN Borong. Potential geographical distributions of Tugarinovia in China under climate change scenarios [J]. Arid Zone Research, 2023, 40(6): 949-957. |
[6] | YAO Chunyan, LIU Honghu, LIU Jing. Variation of runoff and sediment in the headwaters of the Yangtze River from 1980 to 2020 [J]. Arid Zone Research, 2023, 40(5): 726-736. |
[7] | DAI Jun, HU Haizhu, MAO Xiaomin, ZHANG Ji. Future climate change trends in the Shiyang River Basin based on the CMIP6 multi-model estimation data [J]. Arid Zone Research, 2023, 40(10): 1547-1562. |
[8] | YAO Daijun, LIU Kang, HUI Yuxiang, WANG Kaixin. The response and mechanism of Pinus tabulaeformis tree-ring width to climate change in Maijishan Mountain, Tianshui, China [J]. Arid Zone Research, 2023, 40(1): 19-29. |
[9] | CHEN Hongguang, MENG Fanhao, SA Chula, LUO Min, WANG Mulan, LIU Guixiang. Analysis of the characteristics of runoff evolution and its driving factors in a typical inland river basin in arid regions [J]. Arid Zone Research, 2023, 40(1): 39-50. |
[10] | ZHANG Haochen,SA Chula,MENG Fanhao,LUO Min,WANG Mulan,GAO Hongdou,ADIYA Saruulzaya. Dynamic changes and driving factors of the surface freeze-thaw index in Inner Mongolia [J]. Arid Zone Research, 2022, 39(6): 1996-2008. |
[11] | WANG Jingwen,TANG Zhiguang,DENG Gang,HU Guojie,SANG Guoqing. Monitoring of snowline altitude at the end of melting season in Tianshan Mountains from 1991 to 2021 [J]. Arid Zone Research, 2022, 39(5): 1385-1397. |
[12] | GUO Yili,LI Shuheng,WANG Jiachuan,HAN Yijie. Response divergence of radial growth to climate change in earlywood and latewood of Larix principis-rupprechtii in Luya Mountain [J]. Arid Zone Research, 2022, 39(5): 1449-1463. |
[13] | WANG Xiaofei,HUANG Yue,LIU Tie,LI Junli,WANG Zheng,ZAN Chanjuan,DUAN Yongchao. Analysis of water balance change and influencing factors in Issyk-Kul Lake in recent 60 years [J]. Arid Zone Research, 2022, 39(5): 1576-1587. |
[14] | ZHANG Yunxin,HAO Haichao,FAN Lianlian,LI Yaoming,ZHANG Renping,LI Kaihui. Study on spatio-temporal dynamics and driving factors of NPP in Central Asian grassland [J]. Arid Zone Research, 2022, 39(3): 698-707. |
[15] | ZHANG Lin,ZHANG Yunling,MA Songmei,ZHANG Dan,HE Lingyun. Distribution pattern and driving mechanisms of the sand plant Leymus racemosus in the Junggar Basin [J]. Arid Zone Research, 2022, 39(3): 863-871. |
|