Arid Zone Research ›› 2021, Vol. 38 ›› Issue (1): 247-256.doi: 10.13866/j.azr.2021.01.26
• Plant and Plant Physiology • Previous Articles Next Articles
SANG Yu(),GAO Wenli,Zainur Tursu,FAN Xue,MA Xiaodong()
Received:
2020-05-11
Revised:
2020-07-24
Online:
2021-01-15
Published:
2021-03-05
Contact:
Xiaodong MA
E-mail:1013200771@qq.com;mxd1107@126.com
SANG Yu,GAO Wenli,Zainur Tursu,FAN Xue,MA Xiaodong. Effects of drought stress and arbuscular-mycorrhizal fungi on root growth, nitrogen absorption, and distribution of two desert riparian plant seedlings[J].Arid Zone Research, 2021, 38(1): 247-256.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 3
Dry weight of above-ground and underground parts of Tamarix ramosissima and Alhagi sparsifolia seedlings under different water treatments"
种植模式 | 接菌 | 对照组CK | 试验组S | ||||
---|---|---|---|---|---|---|---|
地上/g | 地下/g | 地上/g | 地下/g | ||||
单一种植 | 多枝柽柳 | M+ | 0.97±1.4Ba | 1.17±0.7Ca | 1.11±0.7Bab | 0.77±0.2Cc | |
M- | 0.88±0.2Bb | 0.96±0.3Ca | 0.93±0.2Ba | 0.62±0.7Cc | |||
疏叶骆驼刺 | M+ | 2.30±0.7Ab | 7.11±1.6Aa | 2.57±1.4Ab | 1.82±0.5Ac | ||
M- | 1.83±0.6Ac | 5.41±1.8Ba | 0.45±0.1Cd | 0.79±0.4Cd | |||
混合种植 | 多枝柽柳 | M+ | 0.88±0.3Bb | 0.96±0.7Ca | 0.62±0.2Cc | 0.61±0.4Cc | |
M- | 0.72±0.2Bbc | 0.87±0.5Cb | 0.49±0.1Dd | 0.32±0.2Dd | |||
疏叶骆驼刺 | M+ | 1.88±0.6Ac | 5.54±1.7Ba | 1.13±0.7Bc | 0.87±0.4Bd | ||
M- | 1.69±0.7Ab | 4.67±1.4Ba | 0.92±0.2Bcd | 0.76±0.2Bd |
Tab. 4
Effects of AMF on Root Length of Tamarix ramosissima and Alhagi sparsifolia seedlings under different water treatments"
种植模式 | 水分处理 | 粗根长度(d>2 mm) | 细根长度(0.5 mm<d<2 mm) | ||||
---|---|---|---|---|---|---|---|
M+ | M- | M+ | M- | ||||
单一种植 | 多枝柽柳 | CK | 14.7±0.7Cab | 13.1±0.5Cb | 17.9±0.8Ba | 15.7±0.5Ca | |
S | 6.3±0.5Dc | 5.2±0.3Dc | 12.9±0.8Bb | 10.4±0.4Cb | |||
疏叶骆驼刺 | CK | 23.5±0.2Aa | 20.7±0.4Aa | 28.7±0.7Aa | 22.5±0.5Ba | ||
S | 17.3±0.7Bb | 15.3±0.4Bb | 24.7±0.8Aa | 19.9±0.5Bb | |||
混合种植 | 多枝柽柳 | CK | 13.9±0.1Cc | 12.1±0.4Cc | 19.7±0.7Bb | 15.9±0.5Cc | |
S | 7.2±0.5Db | 6.4±0.6Dc | 15.7±0.4Cc | 9.7±0.5Dc | |||
疏叶骆驼刺 | CK | 22.7±0.6Ab | 19.7±0.7Bb | 30.1±0.4Aa | 19.3±0.7Bb | ||
S | 18.2±0.5Bb | 13.4±1.2Cc | 25.7±0.2Ab | 17.6±0.6Cc |
Tab. 5
Effects of AMF on root surface Area of Tamarix ramosissima and Alhagi sparsifolia seedlings under different water treatments"
种植模式 | 水分处理 | 粗根表面积(d>2 mm) | 细根表面积(0.5 mm<d<2 mm) | ||||
---|---|---|---|---|---|---|---|
M+ | M- | M+ | M- | ||||
单一种植 | 多枝柽柳 | CK | 147.3±0.7Ba | 103.1±0.5Aa | 315.24±7.4Ab | 304.32±6.4Ab | |
S | 93.5±0.5Cb | 75.2±0.3Dc | 298.21±6.4Bc | 287.14±7.6Cc | |||
疏叶骆驼刺 | CK | 205.3±0.2Aa | 180.7±0.4Ab | 323.13±6.Aab | 310.57±7.1Ab | ||
S | 173.8±0.7Bc | 154.3±0.4Bc | 287.56±6.2Ba | 273.75±5.4Cb | |||
混合种植 | 多枝柽柳 | CK | 109.9±0.1Bc | 72.1±0.4Dc | 321.13±5.6Aa | 310.24±7.3Aab | |
S | 97.2±0.5Cb | 66.4±0.6Dc | 281.71±4.7Bb | 277.81±6.3Bc | |||
疏叶骆驼刺 | CK | 112.7±0.6Cb | 89.7±0.7Cb | 313.45±6.9Aab | 297.76±7.3Bab | ||
S | 88.2±0.5Db | 73.4±1.2Dc | 253.14±4.1Cb | 236.17±3.8Cb |
Tab. 6
Effects of AMF on SLR of Tamarix ramosissima and Alhagi sparsifolia seedlings under differentwater treatments"
种植模式 | 水分处理 | 粗根比根长(d>2 mm) | 细根比根长(0.5 mm<d<2 mm) | ||||
---|---|---|---|---|---|---|---|
M+ | M- | M+ | M- | ||||
单一种植 | 多枝柽柳 | CK | 101.1±0.5Aa | 144.3±0.7Aa | 274.3±2.1Aa | 297.3±1.1Aa | |
S | 65.2±0.3Dc | 83.5±0.5Cb | 231.1±0.9Bb | 267.7±2.4Ab | |||
疏叶骆驼刺 | CK | 100.7±0.4Aa | 125.3±0.2Aa | 323.8±0.9Ab | 376.9±1.8Aa | ||
S | 74.3±0.4Ca | 93.8±0.7Bb | 287.4±1.5Ab | 313.9±0.6Aa | |||
混合种植 | 多枝柽柳 | CK | 92.1±0.4Bc | 109.9±0.1Cc | 286.3±0.7Aa | 312.6±0.3Aa | |
S | 67.4±0.6Dc | 87.2±0.5Cb | 224.9±1.2Bb | 277.3±0.7Ba | |||
疏叶骆驼刺 | CK | 79.7±0.7Bb | 106.7±0.6Bb | 309.7±0.3Ab | 356.9±1.3Ab | ||
S | 63.4±1.2Dc | 87.2±0.5Cb | 255.3±0.7Bb | 278.8±1.5Ba |
[1] | 雷垚, 郝志鹏, 陈保冬. 土著菌根真菌和混生植物对羊草生长和磷营养的影响[J]. 生态学报, 2013,33(4):1071-1079. |
[ Lei Yao, Hao Zhipeng, Chen Baodong. Effects of indigenous AM fungi and neighboring plants on the growth and phosphorus nutrition of Leymus chinensis[J]. Acta Ecologica Sinica, 2013,33(4):1071-1079. ] | |
[2] | 李军帅. 丛枝菌根真菌菌丝侵染特性与植物系统性关系的研究[D]. 兰州: 兰州大学, 2016. |
[ Li Junshuai. Studying on Between Hyphal Infection Characteristic of AMF and Phylogeny of Plant[D]. Lanzhou: Lanzhou University, 2016. ] | |
[3] | 向丹, 徐天乐, 李欢, 等. 丛枝菌根真菌的生态分布及其影响因子研究进展[J]. 生态学报, 2017,37(11):3597-3606. |
[ Xiang Dan, Xu Tianle, Li Huan, et al. Ecological distribution of arbuscular mycorrhizal fungi and the influencing factors[J]. Acta Ecologica Sinica, 2017,37(11):3597-3606. ] | |
[4] | HE X H, Critchley C, Bledsoe C. Nitrogen transfer within and between plants through common mycorrhizalnetworks (CMNs)[J]. Critical Reviews in Plant Sciences, 2003,22(6):531-567. |
[5] | Booth M G. Mycorrhizal networks mediate overstorey-understorey competition in a temperate forest[J]. Ecology Letters, 2004,7(7):538-546. |
[6] | 钟小莉, 马晓东, 吕豪豪, 等. 干旱胁迫下氮素对胡杨幼苗生长及光合的影响[J]. 生态学杂志, 2017,36(10):2777-2786. |
[ Zhong Xiaoli, Ma Xiaodong, Lyu Haohao, et al. Effect of nitrogen on growth and photosynjournal of Populus euphratica seedlings under drought stress[J]. Chinese Journal of Ecology, 2017,36(10):2777-2786. ] | |
[7] | 马嘉琦. 丛枝菌根真菌对植物耐旱性的影响研究进展[J]. 生物技术世界, 2016(3):63-63. |
[ Ma Jiaqi. Effects of arbuscular mycorrhizal fungi on plant drought tolerance: Research progress[J]. Biotech World, 2016(3):63-63. ] | |
[8] | Ali Ganjeali, Elham Ashiani, Maryam Zare, et al. Influences of the arbuscular mycorrhizal fungus Glomus mosseae on morphophysiological traits and biochemical compounds of common bean (Phaseolus vulgaris) under drought stress[J]. South African Journal of Plant and Soil, 2018,35(2):121-127. |
[9] | Renee H P, Jonathan B G, Todd M P, et al. Habitat-specific AMF symbioses enhance drought tolerance of a native Kenyan grass[J]. Acta Oecologica, 2017,78:71-78. |
[10] | Ruiz-Lozano J M, Azcón R. Mycorrhizal colonization and drought stress as factors affecting nitrate reductase activity in lettuce plants[J]. Agriculture, Ecosystems and Environment, 1996,60(2-3):175-181. |
[11] | Suri V K, Kumar A, Choudhary A. AM-fungi lead to better plant nutrient acquisition and drought tolerance in agricultural crops: A review[J]. Current Advances in Agricultural Sciences, 2017,9(1):1-12. |
[12] | Ingraffia R, Amato G, Frenda A S, et al. Impacts of arbuscular mycorrhizal fungi on nutrient uptake, N2 fixation, N transfer, and growth in a wheat/faba bean intercropping system[J]. PLoS ONE, 2019,14(3):103116-103116. |
[13] | Wahbi S, Maghraoui T, Hafidi M, et al. Enhanced transfer of biologically fixed N from faba bean to intercropped wheat through mycorrhizal symbiosis[J]. Applied Soil Ecology, 2016,107:91-98. |
[14] | 张瑞群, 马晓东, 吕豪豪. 多枝柽柳幼苗生长及其根系解剖结构对水盐胁迫的响应[J]. 草业科学, 2016,33(6):1164-1173. |
[ Zhang Ruiqun, Ma Xiaodong, Lyu Haohao. Response of growth and anatomical structure of roots of Tamarix ramosissima seedlings to salinity and water stress[J]. Pratacultural Science, 2016,33(6):1164-1173. ] | |
[15] | 杨玉海, 陈亚宁, 李卫红. 荒漠河岸林植物丛枝菌根真菌侵染及环境影响因子——以塔里木河下游为例[J]. 自然科学进展, 2008,18(4):397-405. |
[ Yang Yuhai, Chen Yaning, Li Weihong. Fungal infection of arbuscular mycorrhizal fungi and environmental impact ctors in desert riparitic forests: A case study of the lower Tarim River[J]. Progress in Natural Science, 2008,18(4):397-405. ] | |
[16] | 孟晓燕, 尹林克, 陈理. 塔里木河下游丛枝菌根植物的侵染[J]. 干旱区地理, 2008,31(1):102-108. |
[ Meng Xiaoyan, Yin Linke, Chen Li. Arbuscular mycorrhizaes of common plants infection at the lower reaches of Tarim River[J]. Arid Land Geography, 2008,31(1):102-108. ] | |
[17] | 杨玉海, 陈亚宁, 蔡柏岩, 等. 极端干旱区胡杨根围丛枝菌根真菌的分离与鉴定[J]. 干旱区地理, 2012,35(2):260-266. |
[ Yang Yuhai, Chen Yaning, Cai Boyan, et al. Arbuscular mycorrhizal in roots of Populus euphratic in the lower reaches of Tarim River in the extreme arid area[J]. Arid Land Geography, 2012,35(2):260-266. ] | |
[18] | 何树斌, 郭理想, 李菁, 等. 丛枝菌根真菌与豆科植物共生体研究进展[J]. 草业学报, 2017,26(1):187-194. |
[ He Shubin, Guo Lixiang, Li Jing, et al. Advances in arbuscular mycorrhizal fungi and legumes symbiosis research[J]. Acta Prataculturae Sinica, 2017,26(1):187-194. ] | |
[19] | 王幼珊, 陈理, 张淑彬, 等. 新疆天然胡杨林和野生骆驼刺丛枝菌根真菌多样性研究初报[J]. 干旱区研究, 2010,27(6):927-932. |
[ Wang Youshan, Chen Li, Zhang Shubin, et al. Biodiversity of arbuscular mycorrhizal fungi in the natural forests of Populus euphratica and Alhagi sparsifolia in Xinjiang[J]. Arid Zone Research, 2010,27(6):927-932. ] | |
[20] |
Liu Q, Parsons A J, Xue H, et al. Functional characterization and transcript analysis of an alkaline phosphatase from the arbuscular mycorrhizal fungus Funneliformis mosseae[J]. Fungal Genetics and Biology, 2013,54:52-59.
doi: 10.1016/j.fgb.2013.02.009 pmid: 23474124 |
[21] | Chen K, Shi S M, Yang X H. Contribution of arbuscular mycorrhizal inoculation to the growth and photosynjournal of mulberry in karst rocky desertification area[J]. Applied Mechanics and Metirals, 2014,488(8):769-773. |
[22] |
Barto E K, Hilker M, Müller F, et al. The fungal fast lane: Common mycorrhizal networks extend bioactive zones of allelochemicals in soils[J]. PLoS ONE, 2011,6(11):e27195.
doi: 10.1371/journal.pone.0027195 pmid: 22110615 |
[23] | 刘欢. 不同丛枝菌根真菌对四种植物生长特性影响[D]. 兰州: 甘肃农业大学, 2016. |
[ Liu Huan. Effect of Various Arbuscular Mycorrhizal Fungi on Plant Growth Characteristics[D]. Lanzhou: Gansu Agricultural University, 2016. ] | |
[24] | Merrild M P, Ambus P, Rosendahl S. Common arbuscular mycorrhizal networks amplify competition for phosphorus between seedlings and established plants[J]. New Phytologist, 2013,200(1):229-240. |
[25] | Weremijewicz J, Sternberg L D, Janos D P. Common mycorrhizal networks amplify competition by preferential mineral nutrient allocation to large host plants[J]. New Phytologist, 2016,212(2):461-471. |
[26] | 韩艳英, 叶彦辉, 王贞红, 等. 西藏砂生槐根系生物量、比根长和根长密度[J]. 东北林业大学学报, 2014,42(2):39-41. |
[ Han Yanying, Ye Yanhui, Wang Zhenhong, et al. Root biomass, specific root length and root length density of Sophora moorcroftian in Tibet[J]. Journal of Northeast Forestry University, 2014,42(2):39-41. ] | |
[27] | Veiga R S, Faccio A, Genre A. Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana[J]. Plant Cell & Environment, 2013,36(11):1926-1937. |
[28] | 文哲. 15N同位素稀释技术和示踪技术在森林土壤N素研究中的应用[J]. 南方农业, 2016,10(30):102-103, 109. |
[ Wen Zhe. 15N application on isotope dilution technique and tracer technique in the study of N element in forest soil[J]. South China Agriculture, 2016,10(30):102-103, 109. ] | |
[29] | 刘贝, 高媛, 宋文俊, 等. AMF对烟草氮代谢及渗透调节物质的影响[J]. 菌物研究, 2017,15(1):14-20. |
[ LiuBei, Gao Yuan, Song Wenjun, et al. Effects of AMF on nitrogen metabolism and osmotic regulators in tobacco[J]. Journal of Fungal Research, 2017,15(1):14-20. ] | |
[30] | 邹英宁, 吴强盛, 李艳, 等. 丛枝菌根真菌对枳根系形态和蔗糖、葡萄糖含量的影响[J]. 应用生态学报, 2014,25(4):1125-1129. |
[ Zou Yingning, Wu Qiangsheng, Li Yan, et al. Effects of arbuscular mycorrhizal fungi on root system morphology and sucrose and glucose contents of Poncirus trifoliata[J]. Chinese Journal of Applied Ecology, 2014,25(4):1125-1129. ] | |
[31] |
Walder F, Niemann H, Natarajan M, et al. Mycorrhizal networks: Common goods of plants shared under unequal terms of trade[J]. Plant Physiology, 2012,159:789-797.
doi: 10.1104/pp.112.195727 |
[32] | 马坤, 杨建军, 李璐, 等. 接种丛枝菌根真菌后干旱胁迫对木棉根区土壤和体内养分的影响[J]. 中南林业科技大学学报, 2017,37(11):90-95, 102. |
[ Ma Kun, Yang Jianjun, Li Lu, et al. Drought stress effects of nutrients of the Bombax ceiba at the root soil and plants body after inoculation of AMF[J]. Journal of Central South University of Forestry&Technology, 2017,37(11):90-95, 102. ] | |
[33] | 赖金莉, 李欣欣, 薛磊, 等. 植物抗旱性研究进展[J]. 江苏农业科学, 2018,46(17):23-27. |
[ Lai Jinli, Li Xinxin, Xue Lei, et al. Research progress of plant drought resistance[J]. Jiangsu Agricultural Sciences, 2018,46(17):23-27. ] | |
[34] |
Ma H L, Tecimen H B, Lin W, et al. Role of soluble and exchangeable nitrogen pools in N cycling and the impact of nitrogen added in forest soil[J]. Environmental Science and Pollution Research International, 2020,27(5):5398-5407.
doi: 10.1007/s11356-019-07316-y pmid: 31848955 |
[35] | Yang H, Zang Y, Yuan Y. Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi: Evidence from ITS rDNA sequence metadata[J]. BMC Evolutionary Biology, 2012,2(1):1-13. |
[36] | 雷垚, 伍松林, 郝志鹏, 等. 丛枝菌根根外菌丝网络形成过程中的时间效应及植物介导作用[J]. 西北植物学报, 2013,33(1):154-161. |
[ Lei yao, Wu Songlin, Hao Zhipeng, et al. Development of arbuscular mycorrhizal hyphal networks mediated by different plants and the time effects[J]. Acta Botanica Boreali-Occidentalia Sinica, 2013,33(1):154-161. ] |
[1] | YAN Qiaofang, SHAN Lishan, XIE Tingting, WANG Hongyong, SHI Yating. Morphological characteristics of the leaves and roots of Caroxylon passerinum seedlings in response to drought-induced stress [J]. Arid Zone Research, 2024, 41(1): 92-103. |
[2] | BAI Ju, LIU Xiaolin, LI Shen, LIANG Zheming, XU Zihang, WANG Yongliang, YANG Zhiping. Mechanism of sludge alkaline thermal hydrolysis liquid on the growth of Brassica chinensis under drought stress [J]. Arid Zone Research, 2024, 41(1): 80-91. |
[3] | XU Mengqi,GAO Yanju,ZHANG Zhihao,HUANG Caibian,ZENG Fanjiang. Effects of drought stress on growth and physiology of Alhagi sparsifolia seedlings [J]. Arid Zone Research, 2023, 40(2): 257-267. |
[4] | LI Zehou,LI Ruixi,ZHANG Shubin,WANG Chongbin,ZHENG Mingming,DONG Yeqing,WU Xue. Responses of leaf structural and chemical trait of Tamarix ramosissima to soil water changes [J]. Arid Zone Research, 2022, 39(5): 1486-1495. |
[5] | TIAN Xiaoxia,WEI Xiaofeng,WEI Hao,XU Mingshuang,MAO Peichun. Comprehensive evaluation of drought tolerance of six forage species at the seedling stage [J]. Arid Zone Research, 2022, 39(3): 978-985. |
[6] | YU Yang,ZHANG Zhihao,YANG Jianming,CHAI Xutian,ZENG Fanjiang. Stoichiometric characteristics of leaves and fine roots in Alhagi sparsifolia in response to the addition of nitrogen and water [J]. Arid Zone Research, 2022, 39(2): 551-559. |
[7] | LI Jialuo,GUO Mishan,GAO Guanglei,A Lasa,DU Fengmei,YIN Xiaolin,DING Guodong. Physiological responses of mycorrhizal seedlings of Pinus sylvestris var. mongolica to drought stress [J]. Arid Zone Research, 2021, 38(6): 1704-1712. |
[8] | LI Ziyu,CHENG Qihui,HUANG Feng,GUO Zhentian. Spatiotemporal evolution of vegetation coverage in Alhagi sparsifolia Reserve in Turpan Basin, Xinjiang [J]. Arid Zone Research, 2021, 38(4): 1104-1110. |
[9] | YANG Biaosheng,SHAN Lishan,MA Jing,XIE Tingting,YANG Jie,WEI Changlin. Response of growth and root morphological characteristics of Reaumuria soongorica seedlings to drought-rehydration [J]. Arid Zone Research, 2021, 38(2): 469-478. |
[10] | WU Nan, ZHANG Jing, WANG Yue, YIN Jin-fei, ZHANG Yuan-ming. Effects of Snow Cover and Arbuscular Mycorrhizal Fungi Network on the Seedling Growth of Erodium oxyrrhynchum [J]. , 2018, 35(3): 624-632. |
[11] | TONG Xiao-Qin, WANG Shu-Zhi, XIA Yong, ZHANG Ye, LIU Yue-Fang, PAN Xiang-Liang. Early-warning of Drought Stress for Typical Crops in Urumqi with Chlorophyll Fluorescence Technique [J]. , 2013, 30(5): 860-866. |
[12] | ZHOU Jiang, PEI Zong-Ping, HU Jia-Jia, JIA Han-Shuai, ZHU Lin. Research on Drought Resistance of Three Plant Species in Ecological Regeneration on Rocky Slope under Drought Stress [J]. , 2012, 29(3): 440-444. |
[13] | WU Xing-Xing, WU Yi-Xin, ZHAO Zheng-Long, Rainer BORRISS, MAO Zi-Chao, CHEN Xiao-Hua, HE Yue-Qiu. Effects of Seed Dressing with 4 PGPR Strains on Growth and Grain Yield of Broad Bean (Vicia faba L.) under Drought Stress [J]. , 2012, 29(2): 203-207. |
[14] | YAN Shu-yun, ZHOU Zhi-yu, ZOU Li-na, QIN Yu. Effect of Drought Stress on Physiological and Biochemical Properties of Amorpha fruticosa Seedlings [J]. , 2011, 28(1): 139-145. |
[15] | Kurban Halil, WANG Lei, Yakup Abduxukur, Anwar Salam. Osmolyte Accumulation of Armeniaca vulgaris under Continuous Drought Stress [J]. , 2011, 28(1): 126-132. |
|