Arid Zone Research ›› 2025, Vol. 42 ›› Issue (3): 467-479.doi: 10.13866/j.azr.2025.03.07
• Land and Water Resources • Previous Articles Next Articles
JIANG Kangwei1(), WANG Yafei2, LIU Chentong2, LI Hong1, LYU Cheng3, Tursunnay REYIMU3, ZHANG Qingqing3(
)
Received:
2024-09-24
Revised:
2024-11-20
Online:
2025-03-15
Published:
2025-03-17
Contact:
ZHANG Qingqing
E-mail:waff981021@163.com;greener2010@sina.com
JIANG Kangwei, WANG Yafei, LIU Chentong, LI Hong, LYU Cheng, Tursunnay REYIMU, ZHANG Qingqing. Responses of soil microbial communities to grazing and their relationship with environmental factors[J].Arid Zone Research, 2025, 42(3): 467-479.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Basic characteristics of plant communities in the study area"
放牧强度 | |||
---|---|---|---|
轻度放牧 | 重度放牧 | 未放牧 | |
植物优势种 | 细果薹草+针茅+无芒雀麦 (Carex stenocarpa+Stipa capillata+Bromus inermis) | 醉马草+细果薹草+平车前(Achnatherum inebrians+Carex stenocarpa+Plantago depressa) | 针茅+羊茅+草地早熟禾 (Carex stenocarpa+Festuca ovina+Poa pratensis) |
高度/cm | 18.12±2.15b | 11.53±1.68c | 24.83±2.86a |
盖度/% | 92±5.23a | 63±3.76b | 84±3.51a |
生物量/(g·m-2) | 186.75±16.73b | 78.24±6.91c | 223.89±14.36a |
土壤有机碳/(g·kg-1) | 94.40±2.92a | 91.04±3.39a | 64.05±2.63b |
土壤全氮/(g·kg-1) | 2.56±0.55ab | 2.96±0.49a | 1.35±0.46b |
全磷/(g·kg-1) | 0.85±0.08a | 0.88±0.06a | 0.71±0.03b |
全钾/(g·kg-1) | 10.93±0.57a | 9.10±0.43ab | 8.15±0.42b |
速效氮/(mg·kg-1) | 118.46±22.79ab | 129.24±22.91a | 86.04±21.70b |
速效磷/(mg·kg-1) | 25.60±1.36a | 20.29±2.23ab | 13.91±1.27b |
速效钾/(mg·kg-1) | 438.78±43.11a | 356.49±48.51ab | 304.18±45.99b |
土壤密度/(g·cm-3) | 0.65±0.03b | 0.66±0.01b | 0.82±0.04a |
土壤含水量/% | 0.47±0.04ab | 0.60±0.03a | 0.41±0.02b |
土壤pH | 7.71±0.08a | 7.55±0.15a | 7.15±0.14a |
[1] | Lian X H, Jiao L M, Liu Z J, et al. Multi-spatiotemporal heterogeneous legacy effects of climate on terrestrial vegetation dynamics in China[J]. GIScience & Remote Sensing, 2022, 59(1): 164-183. |
[2] | Schwabedissen S G, Lohse K A, Reed S C, et al. Nitrogenase activity by biological soil crusts in cold sagebrush steppe ecosystems[J]. Biogeochemistry, 2017, 134(1-2): 57-76. |
[3] |
郑慧, 薛江博, 桂建华, 等. 放牧强度对华北农牧交错带典型草地土壤化学计量特征的短期影响[J]. 应用生态学报, 2021, 32(7): 2433-2439.
doi: 10.13287/j.1001-9332.202107.008 |
[Zheng Hui, Xue Jiangbo, Du Jianhua, et al. Short-term effects of grazing intensity on soil stoichiometric characteristics of typical grassland in the agro-pastoral ecotone of northern China[J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2433-2439.]
doi: 10.13287/j.1001-9332.202107.008 |
|
[4] | 赵轻舟, 王艳芬, 崔骁勇, 等. 草地土壤微生物多样性影响因素研究进展[J]. 生态科学, 2018, 37(3): 204-212. |
[Zhao Qingzhou, Wang Yanfen, Cui Xiaoyong, et al. Research progress of the influence factors of soil microbial diversity in grassland[J]. Ecological Science, 2018, 37(3): 204-212.] | |
[5] | Bardgett R D, Hobbs P J, Frostegard A. Changes in soil fungal: Bacterial biomass ratios following reductions in the intensity of management of an upland grassland[J]. Biology and Fertility of Soils, 1996, 22(3): 261-264. |
[6] | Li Y, Wang S, Jiang L, et al. Changes of soil microbial community under different degraded gradients of alpine meadow[J]. Agriculture, Ecosystems & Environment, 2016, 222: 213-222. |
[7] | 郑佳华, 赵萌莉, 王琪, 等. 放牧和刈割对大针茅草原土壤微生物群落结构及多样性的影响[J]. 生态学报, 2022, 42(12): 4998-5008. |
[Zheng Jiahua, Zhao Mengli, Wang Qi, et al. Effects of management regime on soil microbial community structure and diversity of Stipa grandis grassland[J]. Acta Ecologica Sinica, 2022, 42(12): 4998-5008.] | |
[8] |
张彤, 刘静, 韩叙, 等. 放牧对沙地樟子松林土壤养分及微生物群落的影响[J]. 干旱区研究, 2023, 40(2): 194-202.
doi: 10.13866/j.azr.2023.02.04 |
[Zhang Tong, Liu Jing, Han Xu, et al. Effects of grazing on soil nutrients and microbial community of Pinus sylvestris var. mongolica forest in sandy land[J]. Arid Zone Research, 2023, 40(2): 194-202.] | |
[9] | Xu W H, Xu H M, Delgado-baquerizo M, et al. Global meta-analysis reveals positive effects of biochar on soil microbial diversity[J]. Geoderma, 2023, 436: 116528. |
[10] | 苏比努尔·吾麦尔江, 吐尔逊娜依·热依木, 于昭文, 等. 山地草甸草地植物与昆虫多样性对放牧强度的响应[J]. 中国草地学报, 2023, 45(3): 20-29. |
[Subinuer Wumaierjiang, Tuersunnayi Reyimu, Yu Zhaowen, et al. The responses of mountain meadow plant and insect diversity to grazing intensity[J]. Chinese Journal of Grassland, 2023, 45(3): 20-29.] | |
[11] |
江康威, 张青青, 王亚菲, 等. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(6): 701-718.
doi: 10.17521/cjpe.2023.0225 |
[Jiang Kangwei, Zhang Qingqing, Wang Yafei, et al. Characteristics of plant functional groups and the relationships with soil environmental factors in middle part of northern slope of Tianshan Mountains under different grazing intensities[J]. Chinese Journal of Plant Ecology, 2024, 48(6): 701-718.]
doi: 10.17521/cjpe.2023.0225 |
|
[12] | 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2005. |
[Bao Shidan. Soil Agrochemical Analysis[M]. Beijing: China Agriculture Press, 2005.] | |
[13] | Wang Z, Jiang S Y, Struik P C, et al. Plant and soil responses to grazing intensity drive changes in the soil microbiome in a desert steppe[J]. Plant and Soil, 2023, 491(6): 219-237. |
[14] | 江康威, 张青青, 王亚菲, 等. 放牧对天山荒漠草地土壤细菌群落的影响[J]. 草业科学, 2023, 40(5): 1243-1257. |
[Jiang Kangwei, Zhang Qingqing, Wang Yafei, et al. Differences in soil bacterial communities of desert grasslands in Tianshan under different grazing disturbances[J]. Pratacultural Science, 2023, 40(5): 1243-1257.] | |
[15] |
赵文, 尹亚丽, 李世雄, 等. 祁连山不同类型草地土壤细菌群落特征研究[J]. 草业学报, 2021, 30(12): 161-171.
doi: 10.11686/cyxb2020459 |
[Zhao Wen, Yin Yali, Li Shixiong, et al. The characteristics of bacterial communities in different vegetation types in the Qilian Mountains[J]. Acta Prataculturae Sinica, 2021, 30(12): 161-171.]
doi: 10.11686/cyxb2020459 |
|
[16] |
Zhang C, Li J, Wang J, et al. Decreased temporary turnover of bacterial communities along soil depth gradient during a 35-year grazing exclusion period in a semiarid grassland[J]. Geoderma, 2019, 351: 49-58.
doi: 10.1016/j.geoderma.2019.05.010 |
[17] |
Leff J W, Jones S E, Prober S M, et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(35): 10967-10972.
doi: 10.1073/pnas.1508382112 pmid: 26283343 |
[18] | Ding C X, Xu X J, Liu Y W, et al. Diversity and assembly of active bacteria and their potential function along soil aggregates in a paddy field[J]. Science of the Total Environment, 2023, 866: 161360 |
[19] |
祁正超, 常佩静, 李永善, 等. 放牧对荒漠灌丛草地土壤团聚体组成及其稳定性的影响[J]. 干旱区研究, 2021, 38(1): 87-94.
doi: 10.13866/j.azr.2021.01.10 |
[Qi Zhengchao, Chang Peijing, Li Yongshan, et al. Effects of grazing intensity on soil aggregates composition, stability, nutrients and C/N in desert shrubland[J]. Arid Zone Research, 2021, 38(1): 87-94.]
doi: 10.13866/j.azr.2021.01.10 |
|
[20] | 杨阳, 贾丽欣, 乔荠瑢, 等. 重度放牧对荒漠草原土壤养分及微生物多样性的影响[J]. 中国草地学报, 2019, 41(4): 72-79. |
[Yang Yang, Jia Lixin, Qiao Jirong, et al. Effects of heavy grazing on soil nutrients and microbial diversity in desert steppe[J]. Chinese Journal of Grassland, 2019, 41(4): 72-79.] | |
[21] | 童永尚, 张春平, 董全民, 等. 不同形态氮添加对多年生高寒栽培草地土壤理化性质和微生物群落结构的影响[J]. 环境科学, 2024, 45(6): 3595-3604. |
[Tong Yongshang, Zhang Chunping, Dong Quanmin, et al. Effects of different forms of nitrogen addition on soil physical and chemical properties and microbial community structure of perennial alpine cultivated grassland[J]. Environmental Science, 2024, 45(6): 3595-3604.] | |
[22] |
Heijden M G A V D, Bardgett R D, Straalen N M V. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecology Letters, 2008, 11(3): 296-310.
doi: 10.1111/j.1461-0248.2007.01139.x pmid: 18047587 |
[23] | Delgado-baquerizo M, Maestre F T, Reich P B, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems[J]. Nature Communications, 2016, 7: e02634. |
[24] |
王新, 王云英, 裴薇薇, 等. Meta分析放牧对中国草地土壤氮素矿化和硝化作用的影响[J]. 草地学报, 2023, 31(8): 2490-2495.
doi: 10.11733/j.issn.1007-0435.2023.08.027 |
[Wang Xin, Wang Yunying, Pei Weiwei, et al. Meta-analysis of effects of grazing on soil nitrogen mineralization and nitrification in grassland in China[J]. Acta Agrestia Sinica, 2023, 31(8): 2490-2495.]
doi: 10.11733/j.issn.1007-0435.2023.08.027 |
|
[25] | Hoogendoorn C J, Newton P C D, Devantier B P, et al. Grazing intensity and micro-topographical effects on some nitrogen and carbon pools and fluxes in sheep-grazed hill country in New Zealand[J]. Agriculture, Ecosystems and Environment, 2016, 217(3): 22-32. |
[26] |
Delgado-baquerizo M, Reith F, Dennis P G, et al. Eclogical drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere[J]. Ecology, 2018, 99(3): 583-596.
doi: 10.1002/ecy.2137 pmid: 29315530 |
[27] | Hu Y, Yu G L, Zhou J Q, et al. Grazing and reclamation-induced microbiome alterations drive organic carbon stability within soil aggregates in alpine steppes[J]. Catena, 2023, 231: 107306. |
[28] | Choudhury B U, Mandal S. Indexing soil properties through constructing minimum datasets for soil quality assessment of surface and profile soils of intermontane valley (Barak, North East India)[J]. Ecological Indicators, 2021, 123: 107369. |
[29] | Yang Y, Zhang H, Liu W, et al. Effects of grazing intensity on diversity and composition of rhizosphere and non-rhizosphere microbial communities in a desert grassland[J]. Ecology and Evolution, 2023, 13(7): e10300. |
[30] | Zhang Y, Wang G M, Wang X, et al. Grazing regulates changes in soil microbial communities in plant-soil systems[J]. Agronomy, 2023, 13(3): 708. |
[31] | Xu H W, You C M, Tan B, et al. Effects of livestock grazing on the relationships between soil microbial community and soil carbon in grassland ecosystems[J]. Science of the Total Environment, 2023, 881: 163416. |
[32] | Yang X, Zang J Y, Feng J L, et al. High grazing intensity suppress soil microorganisms in grasslands in China: A meta-analysis[J]. Applied Soil Ecology, 2022, 177: 104502. |
[1] | GAO Haiyan, ZHANG Shengnan, YANG Zhiguo, ZHANG Lei, HUANG Haiguang, YAN Deren. Structure and function of soil fungal community in Pinus tabuliformis sand-fixing forests in Horqin Sandy Land [J]. Arid Zone Research, 2025, 42(1): 118-126. |
[2] | CHEN Songqing, DONG Hongfang, YUE Yifeng, HAO Yuanyuan, LIU Xin, CAO Xianyu, MA Jun. Geographical distribution and dynamic change prediction of Hippophae rhamnoides subsp. sinensis under different climate scenarios [J]. Arid Zone Research, 2024, 41(9): 1560-1571. |
[3] | ZHAO Lichao, ZHANG Chengfu, HE Shuai, MIAO Lin, FENG Shuang, PAN Sihan. Simulation of land surface temperature in complex mountainous terrain and the influence of environmental factors: A case study in Daqingshan, Inner Mongolia [J]. Arid Zone Research, 2024, 41(5): 765-775. |
[4] | AN Ning, GUO Bin, ZHANG Dongmei, YANG Qiyue, LUO Weicheng. Desert vegetation composition and spatial distribution of soil nutrients in the middle section of Hexi Corridor [J]. Arid Zone Research, 2024, 41(3): 432-443. |
[5] | DU Huadong, LIU Yan, BI Yinli, CHE Xuxi, BAI Mengtong. Characteristics of soil properties and fungal community changes in different microgeomorphic units in an arid gravel desert area [J]. Arid Zone Research, 2024, 41(3): 421-431. |
[6] | CHAI Qiaodi, MA Rui, WANG Anlin, ZHANG Fu, LIU Teng, TIAN Yongsheng. Leaf functional traits of typical desert plants in the sand-blocking and sand-fixing belt of the Hexi Corridor [J]. Arid Zone Research, 2024, 41(11): 1898-1907. |
[7] | LI Juan, LIU Yang, LIU Guangxiu, CHENG Liang, GUO Qingyun, ZHANG Wei, ZHANG Gaosen. Study on bacterial community structure and influencing factors in the northern margin of the Shanshan Kumtag Desert [J]. Arid Zone Research, 2023, 40(8): 1358-1368. |
[8] | LI Jiannan, SHI Haibin, MIAO Qingfeng, SHAN Dan, RONG Hao, WEN Yaqin. Effect of environmental factors on the transpiration water consumption of various artificial arbor stands [J]. Arid Zone Research, 2023, 40(8): 1312-1321. |
[9] | LI Rui, SHAN Lishan, XIE Tingting, MA Li, YANG Jie, LI Quangang. Variation in the leaf functional traits of typical desert shrubs under precipitation gradient [J]. Arid Zone Research, 2023, 40(3): 425-435. |
[10] | WANG Guanzheng, CHANG Shunli, WANG Jianping, ZHANG Yutao, SUN Xuejiao, LI Xiang. Factors affecting Picea schrenkiana regeneration on different slope directions [J]. Arid Zone Research, 2023, 40(10): 1661-1669. |
[11] | YAN Jingming,ZHOU Xiaobing,ZHANG Jing,TAO Ye. Variation in one-year-old branch stoichiometry of Malus sieversii at different altitudes and the influencing factors in Tianshan Mountains, China [J]. Arid Zone Research, 2021, 38(2): 450-459. |
[12] | QI Zhengchao,CHANG Peijing,LI Yongshan,TIAN Xuemei,LI Xudong,GUO Ding,NIU Decao. Effects of grazing intensity on soil aggregates composition, stability, nutrients and C/N in desert shrubland [J]. Arid Zone Research, 2021, 38(1): 87-94. |
[13] | ZHAO Sheng-long, ZUO Xiao-an, ZHANG Tong-hui, LYU Peng, YUE Ping, ZHANG Jing. Response of relationship between community species diversity and aboveground biomass to grazing intensity in the Urat desert steppe in north China [J]. Arid Zone Research, 2020, 37(1): 168-177. |
[14] | Ren Guang-qi, Jia Xiao-xu, Jia Yu-hua,Guo Cheng-jiu. Spatial Variation of Soil Organic Carbon Content and Its Driving Factors along South-North transect in the Loess Plateau of China [J]. , 2018, 35(3): 524-531. |
[15] | TIAN Yuan,TAXIPLAT Teybay, XU Gui-qing. Gas Exchange of Haloxylon ammodendron and H. persicum [J]. , 2014, 31(3): 542-549. |
|