Arid Zone Research ›› 2024, Vol. 41 ›› Issue (11): 1898-1907.doi: 10.13866/j.azr.2024.11.10
• Plant Ecology • Previous Articles Next Articles
CHAI Qiaodi(), MA Rui(), WANG Anlin, ZHANG Fu, LIU Teng, TIAN Yongsheng
Received:
2024-06-03
Revised:
2024-11-05
Online:
2024-11-15
Published:
2024-11-29
Contact:
MA Rui
E-mail:chaiqd@st.gsau.edu.cn;mr031103@126.com
CHAI Qiaodi, MA Rui, WANG Anlin, ZHANG Fu, LIU Teng, TIAN Yongsheng. Leaf functional traits of typical desert plants in the sand-blocking and sand-fixing belt of the Hexi Corridor[J].Arid Zone Research, 2024, 41(11): 1898-1907.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Characteristics of sampling site"
研究区 | 地理位置 | 海拔/m | 物种 | 林龄/a | 株高/cm | 冠幅/cm | 枯梢率/% | 病虫害 | 生境描述 | |
---|---|---|---|---|---|---|---|---|---|---|
长轴 | 短轴 | |||||||||
民勤 | 38°91′N,103°91′E | 1332 | 梭梭 | 10~15 | 167.86±3.06 | 164.08±9.45 | 159.88±7.60 | 15~20 | 无 | 土壤类型为沙土,土壤含水量约为0.1%~0.2% |
白刺 | 90.65±5.57 | 135.95±6.38 | 124.42±8.06 | 无 | 无 | |||||
高台 | 39°53′N,99°53′E | 1228 | 梭梭 | 10~15 | 228.45±7.31 | 272.10±2.74 | 213.71±7.47 | 仅见于风蚀槽内 | 无 | 土壤类型为沙土,土壤含水量约为0.2%~0.7% |
白刺 | 145.82±13.23 | 480.57±10.44 | 394.82±8.60 | 无 | 无 |
Tab. 2
Differences of leaf functional traits in two habitats"
叶功能性状 | 生境 | 物种 | 生境×物种 | |||||
---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | |||
LT | 2.939 | 0.089 | 51.456 | 0.001*** | 46.56 | 0.001*** | ||
LWC | 9.787 | 0.002* | 345.204 | 0.001*** | 138.238 | 0.001*** | ||
LDMC | 41.070 | 0.001*** | 148.046 | 0.001*** | 1.316 | 0.254 | ||
SLA | 35.768 | 0.001*** | 140.807 | 0.001*** | 4.185 | 0.043* | ||
LOC | 55.635 | 0.001*** | 1201.515 | 0.001*** | 74.988 | 0.001*** | ||
LN | 79.531 | 0.001*** | 1.475 | 0.001*** | 57.188 | 0.001**v | ||
LP | 45.049 | 0.001*** | 5.312 | 0.001*** | 118.909 | 0.001*** | ||
C:N | 809.438 | 0.001*** | 0.280 | 0.598 | 0.042 | 0.838 | ||
N:P | 238.968 | 0.001*** | 103.876 | 0.001*** | 59.729 | 0.001*** | ||
C:P | 373.174 | 0.001*** | 163.228 | 0.001*** | 82.388 | 0.254 |
Tab. 3
Correlation coefficients between leaf functional trait indexes"
样地 | 指标因子 | LT | LWC | LDMC | SLA | LOC | LN | LP | C:N | N:P | C:P |
---|---|---|---|---|---|---|---|---|---|---|---|
民勤 | LT | 1 | |||||||||
LWC | 0.031 | 1 | |||||||||
LDMC | 0.046* | 0.732 | 1 | ||||||||
SLA | -0.093** | 0.686 | 0.427 | 1 | |||||||
LOC | 0.064 | 0.919 | 0.696 | -0.699** | 1 | ||||||
LN | -0.009 | 0.447 | 0.477 | 0.389 | 0.529 | 1 | |||||
LP | 0.017 | 0.295 | 0.213 | 0.253 | 0.317 | 0.089 | 1 | ||||
C:N | 0.003 | -0.033 | -0.150 | -0.058** | -0.100** | 0.871 | 0.030 | 1 | |||
N:P | -0.037 | 0.243 | 0.306 | 0.215* | 0.306 | 0.858 | 0.431 | 0.809 | 1 | ||
C:P | 0.013 | 0.274 | 0.215 | 0.183* | 0.306 | 0.230 | 0.804 | 0.078 | 0.615 | 1 | |
高台 | LT | 1 | |||||||||
LWC | 0.423 | 1 | |||||||||
LDMC | 0.720 | 0.427 | 1 | ||||||||
SLA | -0.517** | 0.242 | 0.499* | 1 | |||||||
LOC | 0.767 | 0.417 | 0.728 | 0.726 | 1 | ||||||
LN | 0.618 | 0.444 | 0.448** | 0.400 | 0.599 | 1 | |||||
LP | -0.729** | -0.511 | -0.706** | -0.646 | -0.815** | -0.569 | 1 | ||||
C:N | -0.149** | -0.209 | 0.014* | 0.081 | 0.034* | -0.765 | 0.051 | 1 | |||
N:P | 0.758 | 0.533 | 0.641 | 0.567 | 0.781 | 0.899 | -0.859 | -0.486 | 1 | ||
C:P | 0.780 | 0.481 | 0.755 | 0.715 | 0.934 | 0.602 | -0.958 | -0.012 | 0.868 | 1 |
Tab. 4
Initial factor rotation component matrix and principal component contribution rate"
样地 | 指标因子 | 主成分一 | 主成分二 | 主成分三 | 主成分四 | 综合得分 | 综合位次 | 公因子方差 |
---|---|---|---|---|---|---|---|---|
民勤 | LT | -1.178 | 0.254 | -1.847 | -0.311 | -0.818 | 9 | 0.974 |
LWC | -0.995 | -0.354 | -1.424 | 1.341 | -0.642 | 8 | 0.920 | |
LDMC | -0.924 | -0.124 | 0.587 | 2.027 | -0.023 | 5 | 0.656 | |
SLA | -0.885 | -0.427 | -1.228 | 1.210 | -0.593 | 7 | 0.671 | |
LOC | -1.205 | 0.223 | -0.913 | 1.203 | -0.457 | 6 | 0.921 | |
LN | -0.930 | -0.535 | 0.160 | 0.278 | 1.234 | 2 | 0.991 | |
LP | -1.059 | -0.380 | 1.373 | 0.134 | 0.028 | 4 | 0.989 | |
C:N | -0.818 | -0.361 | 0.100 | 0.583 | 0.412 | 3 | 0.983 | |
N:P | -1.153 | -0.032 | 1.193 | 0.903 | -1.007 | 10 | 0.995 | |
C:P | -1.124 | -0.178 | -0.161 | 0.225 | 1.508 | 1 | 0.991 | |
特征值 | 4.084 | 2.410 | 1.567 | 1.028 | ||||
贡献率/% | 34.266 | 26.070 | 20.263 | 10.295 | ||||
累计贡献率/% | 34.266 | 60.336 | 80.600 | 90.895 | ||||
高台 | LT | -1.092 | 0.469 | -1.748 | 0.267 | -0.626 | 8 | 0.834 |
LWC | -1.161 | -0.146 | 0.242 | -0.614 | -0.483 | 5 | 0.987 | |
LDMC | -0.299 | -0.693 | -0.120 | -0.607 | -0.392 | 4 | 0.847 | |
SLA | -1.061 | -0.114 | -0.835 | 0.069 | -0.572 | 6 | 0.904 | |
LOC | -1.002 | -0.127 | -0.794 | -0.409 | -0.624 | 7 | 0.900 | |
LN | -0.237 | -0.151 | -2.777 | -0.009 | -0.742 | 10 | 0.980 | |
LP | -0.697 | -0.502 | 1.386 | -0.919 | -0.193 | 3 | 0.870 | |
C:N | -0.956 | -0.512 | 1.668 | -0.310 | -0.146 | 2 | 0.981 | |
N:P | -0.844 | -0.723 | 1.587 | 0.350 | -0.091 | 1 | 0.971 | |
C:P | -0.380 | -1.338 | -0.287 | -0.800 | -0.650 | 9 | 0.961 | |
特征值 | 6.297 | 1.683 | 0.742 | 0.512 | ||||
贡献率/% | 34.943 | 23.751 | 21.512 | 12.134 | ||||
累计贡献率/% | 34.943 | 58.694 | 80.206 | 92.339 |
[1] | Violle C, Navas M L, Vile D, et al. Let the concept of trait be functional![J]. Oikos, 2007, 116(5): 882-892. |
[2] | Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985): 821-827. |
[3] | 李玉霖, 崔建垣, 苏永中. 不同沙丘生境主要植物比叶面积和叶干物质含量的比较[J]. 生态学报, 2005, 25(2): 304-311. |
[Li Yulin, Cui Jianyuan, Su Yongzhong. Comparison of specific leaf area and leaf dry matter content of main plants in different dune habitats[J]. Acta Ecologica Sinica, 2005, 25(2): 304-311. ] | |
[4] | 焦德志, 钟露朋, 杨建霄, 等. 扎龙湿地不同生境芦苇功能性状变异及其对土壤因子的响应[J]. 生态学报, 2023, 43(22): 9305-9313. |
[Jiao Dezhi, Zhong Lupeng, Yang Jianxiao, et al. Variation of functional traits of Phragmites australis and its response to soil factors in different habitats of Zhalong Wetland[J]. Acta Ecologica Sinica, 2023, 43(22): 9305-9313. ] | |
[5] | 孙力, 贡璐, 朱美玲, 等. 塔里木盆地北缘荒漠典型植物叶片化学计量特征及其与土壤环境因子的关系[J]. 生态学杂志, 2017, 36(5): 1208-1214. |
[Sun Li, Gong Lu, Zhu Meiling, et al. Leaf stoichiometry of typical desert plants in the northern margin of Tarim Basin and its relationship with soil environmental factors[J]. Chinese Journal of Ecology, 2017, 36(5): 1208-1214. ] | |
[6] | 李从娟, 徐新文, 孙永强, 等. 不同生境下三种荒漠植物叶片及土壤C、N、P的化学计量特征[J]. 干旱区地理, 2014, 37(5): 996-1004. |
[Li Congjuan, Xu Xinwen, Sun Yongqiang, et al. Stoichiometric characteristics of C, N and P in leaves and soil of three desert plants in different habitats[J]. Arid Land Geography, 2014, 37(5): 996-1004. ] | |
[7] | 王飞, 陈文业, 郭树江, 等. 沙拐枣叶功能性状对生境变化的响应[J]. 西北植物学报, 2024, 44(1): 77-87. |
[Wang Fei, Chen Wenye, Guo Shujiang, et al. Responses of leaf functional traits to habitat changes in Calligonum mongolicum[J]. Acta Botanica Boreali-Occidentalia Sinica, 2024, 44(1): 77-87. ] | |
[8] |
李瑞, 单立山, 解婷婷, 等. 典型荒漠灌木叶片功能性状特征随降水梯度的变化研究[J]. 干旱区研究, 2023, 40(3): 425-435.
doi: 10.13866/j.azr.2023.03.09 |
[Li Rui, Shan Lishan, Jie Tingting, et al. Study on the variation of leaf functional traits of typical desert shrubs with precipitation gradient[J]. Arid Zone Research, 2023, 40(3): 425-435. ]
doi: 10.13866/j.azr.2023.03.09 |
|
[9] | 李静, 陈斌, 田晓萍, 等. 河西走廊中段草原植物群落物种多样性与土壤含水量的关系[J/OL]. 草原与草坪, [2024-09-04], 1-11. |
[Li Jing, Chen Bin, Tian Xiaoping, et al. Relationship between species diversity and soil water content of grassland plant communities in the middle section of Hexi Corridor[J/OL]. Grassland and Turf, [2024-09-04], 1-11. ] | |
[10] | 李天江, 奚立宗, 李玲萍, 等. 基于CMPAS产品的河西走廊汛期降水日变化特征[J]. 陕西气象, 2024(4): 26-31. |
[Li Tianjiang, Xi Lizong, Li Lingping, et al. Diurnal variation characteristics of precipitation in flood season in Hexi Corridor based on CMPAS products[J]. Shanxi Meteorology, 2024(4): 26-31. ] | |
[11] |
Zhang Y, Xie J B, Li Y. Effects of increasing root carbon investment on the mortality and resprouting of Haloxylon ammodendron seedlings under drought[J]. Plant Biology, 2017, 19(2): 191-200.
doi: 10.1111/plb.12511 pmid: 27696600 |
[12] | 史培军, 严平, 高尚玉, 等. 我国沙尘暴灾害及其研究进展与展望[J]. 自然灾害学报, 2000, 9(3): 71-77. |
[Shi Peijun, Yan Ping, Gao Shangyu, et al. Sandstorm disaster in China and its research progress and prospect[J]. Journal of Natural Disasters, 2000, 9(3): 71-77. ] | |
[13] | 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 30-204. |
[Bao Shidan. Soil Agrochemical Analysis[M]. Beijing: China Agriculture Press, 2000: 30-204. ] | |
[14] | Cunningham S A, Summerhayes B, Westoby M. Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients[J]. Ecological Monographs, 1999, 69(4): 569-588. |
[15] |
Dodd G L, Donovan L A. Water potential and ionic effects on germination and seedling growth of two cold desert shrubs[J]. American Journal of Botany, 1999, 86(8): 1146-1153.
pmid: 10449394 |
[16] | 苏培玺, 严巧娣. 内陆黑河流域植物稳定碳同位素变化及其指示意义[J]. 生态学报, 2008, 28(4): 1616-1624. |
[Su Peixi, Yan Qiaodi. Stable carbon isotope variation of plants in inland Heihe River Basin and its indicative significance[J]. Acta Ecologica Sinica, 2008, 28(4): 1616-1624. ] | |
[17] | 刘万德, 苏建荣, 李帅锋, 等. 云南普洱季风常绿阔叶林演替系列植物和土壤C、N、P化学计量特征[J]. 生态学报, 2010, 30(23): 6581-6590. |
[Liu Wande, Su Jianrong, Li Shuaifeng, et al. Stoichiometric characteristics of C, N and P in plant and soil of monsoon evergreen broad-leaved forest succession series in Pu’er, Yunnan[J]. Acta Ecologica Sinica, 2010, 30(23): 6581-6590. ] | |
[18] | 何念鹏, 刘聪聪, 张佳慧, 等. 植物性状研究的机遇与挑战: 从器官到群落[J]. 生态学报, 2018, 38(19): 6787-6796. |
[He Nianpeng, Liu Congcong, Zhang Jiahui, et al. Opportunities and challenges in plant trait research: From organ to community[J]. Acta Ecologica Sinica, 2018, 38(19): 6787-6796. ] | |
[19] | 余华, 钟全林, 黄云波, 等. 不同种源刨花楠林下幼苗叶功能性状与地理环境的关系[J]. 应用生态学报, 2018, 29(2): 449-458. |
[Yu Hua, Zhong Quanlin, Huang Yunbo, et al. The relationship between leaf functional traits and geographical environment of seedlings under different provenances of Machilus pauhoi[J]. Chinese Journal of Applied Ecology, 2018, 29(2): 449-458. ] | |
[20] | Ohashi Y, Nakayama N, Saneoka H, et al. Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants[J]. Biologia Plantarum, 2006, 50: 138-141. |
[21] | Qin H, Jiao L, Zhou Y, et al. Elevation affects the ecological stoichiometry of Qinghai spruce in the Qilian Mountains of Northwest China[J]. Frontiers in Plant Science, 2022, 13: 917755. |
[22] | Klausmeier C A, Litchman E, Daufresne T, et al. Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton[J]. Nature, 2004, 429(6988): 171-174. |
[23] | Wang L, Zhao G, Li M, et al. C: N: P stoichiometry and leaf traits of halophytes in an arid saline environment, Northwest China[J]. PLoS One, 2015, 10(3): e0119935. |
[24] |
聂明鹤, 沈艳, 陆颖, 等. 宁夏盐池县荒漠草原区不同群落优势植物叶片-土壤生态化学计量特征[J]. 草地学报, 2021, 29(1): 131-140.
doi: 10.11733/j.issn.1007-0435.2021.01.016 |
[Nie Minghe, Shen Yan, Lu Ying, et al. Leaf-soil ecological stoichiometric characteristics of dominant plants in different communities of desert steppe in Yanchi County, Ningxia[J]. Acta Agrestia Sinica, 2021, 29(1): 131-140. ]
doi: 10.11733/j.issn.1007-0435.2021.01.016 |
|
[25] | Koerselman W, Meuleman A F M. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation[J]. Journal of Applied Ecology, 1996: 1441-1450. |
[26] | 王鹏, 戴亚, 吕祥敏, 等. 用流动分析仪测定烟田土壤中的全氮、全磷[J]. 烟草科技, 2004(12): 28-29, 35. |
[Wang Peng, Dai Ya, Lv Xiangmin, et al. Determination of total nitrogen and total phosphorus in tobacco field soil by flow analyzer[J]. Tobacco Science & Technology, 2004(12): 28-29, 35. ] | |
[27] | 张旋, 李蕊希, 郑洲, 等. 极端干旱区多枝柽柳叶片功能性状及其与土壤理化因子的关系[J]. 生态学报, 2023, 43(9): 3699-3708. |
[Zhang Xuan, Li Ruixi, Zheng Zhou, et al. Leaf functional traits of Tamarix ramosissima and their relationship with soil physical and chemical factors in extreme arid area[J]. Acta Ecologica Sinica, 2023, 43(9): 3699-3708. ] | |
[28] | Zhang B, Tang G, Yin H, et al. Groundwater depths affect phosphorus and potassium resorption but not their utilization in a desert phreatophyte in its hyper-arid environment[J]. Frontiers in Plant Science, 2021, 12: 665168. |
[29] | 李中恺, 李小雁, 周沙, 等. 土壤-植被-水文耦合过程与机制研究进展[J]. 中国科学: 地球科学, 2022, 52(11): 2105-2138. |
[Li Zhongkai, Li Xiaoyan, Zhou Sha, et al. Research progress on soil-vegetation-hydrology coupling process and mechanism[J]. Scientia Sinica (Terrae), 2022, 52(11): 2105-2138. ] | |
[30] | Zhou H, Chen Y, Li W, et al. Photosynthesis of Populus euphratica and its response to elevated CO2 concentration in an arid environment[J]. Progress in Natural Science, 2009, 19(4): 443-451. |
[31] | 刘深思, 徐贵青, 米晓军, 等. 地下水埋深和季节性干旱对古尔班通古特沙漠南缘梭梭生理和生长的影响[J]. 生态学报, 2022, 42(21): 8881-8891. |
[Liu Shensi, Xu Guiqing, Mi Xiaojun, et al. Effects of groundwater depth and seasonal drought on the physiology and growth of Haloxylon ammodendron in the southern margin of the Gurbantunggut Desert[J]. Acta Ecologica Sinica, 2022, 42(21): 8881-8891. ] | |
[32] | 王鑫, 杨磊, 赵倩, 等. 半干旱黄土小流域草地群落功能性状空间异质性及环境驱动[J]. 草业科学, 2019, 36(9): 2201-2211. |
[Wang Xin, Yang Lei, Zhao Qian, et al. Spatial heterogeneity and environmental driving of grassland community functional traits in semi-arid loess small watershed[J]. Grassland Science, 2019, 36(9): 2201-2211. ] | |
[33] | 罗艳, 贡璐, 朱美玲, 等. 塔里木河上游荒漠区4种灌木植物叶片与土壤生态化学计量特征[J]. 生态学报, 2017, 37(24): 8326-8335. |
[Luo Yan, Gong Lu, Zhu Meiling, et al. Ecological stoichiometric characteristics of leaves and soil of four shrub species in the desert area of the upper reaches of the Tarim River[J]. Acta Ecologica Sinica, 2017, 37(24): 8326-8335. ] | |
[34] | 张晓龙, 郑元润. 荒漠河岸垂直沿河梯度上胡杨叶片碳氮磷化学计量变化特征及其环境解释[J]. 应用与环境生物学报, 2023, 29(5): 1093-1099. |
[Zhang Xiaolong, Zheng Yuanrun. The stoichiometric characteristics of carbon, nitrogen and phosphorus in leaves of Populus euphratica on the vertical gradient of desert riparian and its environmental interpretation[J]. Chinese Journal of Applied and Environmental Biology, 2023, 29(5): 1093-1099. ] |
[1] | ZHANG Wenrui, SUN Dongyuan, WANG Yike, YANG Jun, LAN Lijun, JIN Hujia, XU Yu. Coupling relationship and spatiao-temporal differentiation of the water resources-ecological environment-social economic system in the Hexi Corridor [J]. Arid Zone Research, 2024, 41(9): 1527-1537. |
[2] | CHEN Songqing, DONG Hongfang, YUE Yifeng, HAO Yuanyuan, LIU Xin, CAO Xianyu, MA Jun. Geographical distribution and dynamic change prediction of Hippophae rhamnoides subsp. sinensis under different climate scenarios [J]. Arid Zone Research, 2024, 41(9): 1560-1571. |
[3] | YANG Xiaoling, ZHOU Hua, CHEN Jing, ZHAO Huihua, WU Wen. Temperature in different climate states and their influence on climate evaluation in the Hexi Corridor Eastern [J]. Arid Zone Research, 2024, 41(7): 1089-1098. |
[4] | ZHAO Lichao, ZHANG Chengfu, HE Shuai, MIAO Lin, FENG Shuang, PAN Sihan. Simulation of land surface temperature in complex mountainous terrain and the influence of environmental factors: A case study in Daqingshan, Inner Mongolia [J]. Arid Zone Research, 2024, 41(5): 765-775. |
[5] | AN Ning, GUO Bin, ZHANG Dongmei, YANG Qiyue, LUO Weicheng. Desert vegetation composition and spatial distribution of soil nutrients in the middle section of Hexi Corridor [J]. Arid Zone Research, 2024, 41(3): 432-443. |
[6] | LI Juan, LIU Yang, LIU Guangxiu, CHENG Liang, GUO Qingyun, ZHANG Wei, ZHANG Gaosen. Study on bacterial community structure and influencing factors in the northern margin of the Shanshan Kumtag Desert [J]. Arid Zone Research, 2023, 40(8): 1358-1368. |
[7] | LI Jiannan, SHI Haibin, MIAO Qingfeng, SHAN Dan, RONG Hao, WEN Yaqin. Effect of environmental factors on the transpiration water consumption of various artificial arbor stands [J]. Arid Zone Research, 2023, 40(8): 1312-1321. |
[8] | LI Rui, SHAN Lishan, XIE Tingting, MA Li, YANG Jie, LI Quangang. Variation in the leaf functional traits of typical desert shrubs under precipitation gradient [J]. Arid Zone Research, 2023, 40(3): 425-435. |
[9] | MA Junmei, MA Jianping, MAN Duoqing, GUO Chunxiu, ZHANG Yunian, ZHAO Peng, WANG Fei, LI Yuanxing. Distribution and regeneration characteristics of natural Populus euphratica forests in Hexi Corridor and their relationship with soil factors [J]. Arid Zone Research, 2023, 40(2): 224-234. |
[10] | WANG Guanzheng, CHANG Shunli, WANG Jianping, ZHANG Yutao, SUN Xuejiao, LI Xiang. Factors affecting Picea schrenkiana regeneration on different slope directions [J]. Arid Zone Research, 2023, 40(10): 1661-1669. |
[11] | LI Ling-ping, LI Yan-ying, SUN Zhan-feng, WANG Rong-zhe. Sandstorm and Its Affecting Meteorological Factors in East Hexi Corridor [J]. Arid Zone Research, 2019, 36(6): 1457-1465. |
[12] | GOU Qian-qian, LI Qiao-qiao, QU Jian-jun, WANG Guo-hua. Variation of Soil Temperature in the Desert-Oasis Ecotone [J]. Arid Zone Research, 2019, 36(4): 809-815. |
[13] | LIU Shi-Zeng, CHANG Zhao-Feng, ZHANG Jian-Hui, TANG Jin-Nian, WANG Qiang-Qiang, ZHANG Da-Biao, ZHU Shu-Juan, ZHANG Guo-Zhong, FAN Bao-Li. Climate and Environment Information from Sand Accumulation Belt in Oasis Marginal Zone in the Hexi Corridor,Gansu Province [J]. , 2013, 30(2): 364-371. |
[14] | WANG Guo-Hua, ZHAO Wen-Zhi, LIU Bing, CHANG Xue-Xiang, ZHANG Zhi-Hui. Study on Response of Evapotranspiration to Scorching Weather in a Desert-Oasis Region in the Hexi Corridor [J]. , 2013, 30(1): 173-181. |
[15] | QIAN Li, FANG Feng, YANG Yong-Long, WANG Rong-Zhe, YANG Mei. Analysis on Hail and Weather Characteristics in the East Hexi Corridor, Gansu Province [J]. , 2013, 30(1): 50-55. |
|