Arid Zone Research ›› 2022, Vol. 39 ›› Issue (5): 1464-1472.doi: 10.13866/j.azr.2022.05.11
• Plant Ecology • Previous Articles Next Articles
LI Xing1,2(),XIN Zhiming1,2,DONG Xue1,2,LI Yonghua3,4,5(),DUAN Ruibing1,2,MA Yuan1,2,LI Xing1,2,LI Kuan6
Received:
2022-02-14
Revised:
2022-06-28
Online:
2022-09-15
Published:
2022-10-25
Contact:
Yonghua LI
E-mail:1172303186@qq.com;lyhids@caf.ac.cn
LI Xing,XIN Zhiming,DONG Xue,LI Yonghua,DUAN Ruibing,MA Yuan,LI Xing,LI Kuan. β diversity and interpretation of plant communities in Beishan and Manongshan areas of Dunhuang[J].Arid Zone Research, 2022, 39(5): 1464-1472.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Composition of families, genera and species of vegetation in Beishan and Manong area of Dunhuang"
序号 | 科 | 属 | 种 | |||
---|---|---|---|---|---|---|
数量/个 | 百分比/% | 数量/个 | 百分比/% | |||
1 | 藜科(Chenopodiaceae) | 12 | 26.70 | 14 | 24.56 | |
2 | 菊科(Asteraceae) | 6 | 13.33 | 12 | 21.05 | |
3 | 禾本科(Poaceae) | 6 | 13.33 | 7 | 12.28 | |
4 | 豆科(Fabaceae) | 4 | 8.89 | 4 | 7.02 | |
5 | 蒺藜科(Zygophyllaceae) | 3 | 6.67 | 4 | 7.02 | |
6 | 百合科(Liliaceae) | 1 | 2.22 | 3 | 5.26 | |
7 | 蓼科(Polygonaceae) | 2 | 4.44 | 2 | 3.52 | |
8 | 十字花科(Brassicaceae) | 2 | 4.44 | 2 | 3.52 | |
9 | 柽柳科(Tamaricaceae) | 2 | 4.44 | 2 | 3.52 | |
10 | 夹竹桃科(Apocynaceae) | 1 | 2.22 | 1 | 1.75 | |
11 | 景天科(Crassulaceae) | 1 | 2.22 | 1 | 1.75 | |
12 | 白花丹科(Plumbaginaceae) | 1 | 2.22 | 1 | 1.75 | |
13 | 麻黄科(Ephedraceae) | 1 | 2.22 | 1 | 1.75 | |
14 | 毛茛科(Ranunculaceae) | 1 | 2.22 | 1 | 1.75 | |
15 | 蔷薇科(Rosaceae) | 1 | 2.22 | 1 | 1.75 | |
16 | 石竹科(Caryophyllaceae) | 1 | 2.22 | 1 | 1.75 |
Tab. 2
Effects of climatic factors, soil factors and geographical distance on β-diversity and turnover components of plant communities"
影响因素 | β多样性 | 更替 | |||
---|---|---|---|---|---|
R2 | P | R2 | P | ||
气候因素 | 0.27 | <0.001 | 0.19 | <0.001 | |
土壤因素 | 0.13 | <0.001 | 0.15 | <0.001 | |
地理距离 | 0.03 | <0.001 | 0.01 | <0.001 | |
气候因素×土壤因素 | 0.32 | <0.001 | 0.26 | <0.001 | |
气候因素×地理距离 | 0.17 | <0.001 | 0.10 | <0.001 | |
土壤因素×地理距离 | 0.16 | <0.001 | 0.15 | <0.001 | |
气候因素×土壤因素×地理距离 | 0.33 | <0.001 | 0.26 | <0.001 |
[1] | 马克平, 钱迎倩, 王晨. 生物多样性研究的现状与发展趋势[J]. 科技导报, 1995(1): 27-30. |
[Ma Keping, Qian Yingqian, Wang Chen. Present status and future of biodiversity studies[J]. Science & Technology Review, 1995(1): 27-30. ] | |
[2] | 崔书红. 加强生物多样性保护实现人与自然和谐共生[J]. 环境与可持续发展, 2021, 46(6): 16-18. |
[Cui Shuhong. Strengthen biodiversity conservation to achieve the harmony between man and nature[J]. Environment and Sustainable Development, 2021, 46(6): 16-18. ] | |
[3] |
Whittaker R H. Vegetation of the Siskiyou mountains, Oregon and California[J]. Ecological Monographs, 1960, 30(3): 279-338.
doi: 10.2307/1943563 |
[4] |
Whittaker R H. Evolution and measurement of species diversity[J]. Taxon, 1972, 21(2-3): 213-251.
doi: 10.2307/1218190 |
[5] |
Condit R, Pitman N, Leigh E G, et al. Beta-diversity in tropical forest trees[J]. Science, 2002, 295(5555): 666-669.
doi: 10.1126/science.1066854 pmid: 11809969 |
[6] | Hubbell S P. The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32)[M]. New Jersey: Princeton University Press, 2011. |
[7] |
Tang Z, Fang J, Chi X, et al. Geography, environment, and spatial turnover of species in China’s grasslands[J]. Ecography, 2012, 35(12): 1103-1109.
doi: 10.1111/j.1600-0587.2012.07713.x |
[8] |
牛克昌, 刘怿宁, 沈泽昊, 等. 群落构建的中性理论和生态位理论[J]. 生物多样性, 2009, 17(6): 579-593.
doi: 10.3724/SP.J.1003.2009.09142 |
[Niu Kechang, Liu Yining, Shen Zehao, et al. Community assembly: The relative importance of neutral theory and niche theory[J]. Biodiversity Science, 2009, 17(6): 579-593. ]
doi: 10.3724/SP.J.1003.2009.09142 |
|
[9] | Jiang L, Lv G, Gong Y, et al. Characteristics and driving mechanisms of species beta diversity in desert plant communities[J]. PloS one, 2021, 16(1): e0245249. |
[10] | 赵怀宝, 刘彤, 雷加强, 等. 古尔班通古特沙漠南部植物群落β多样性及其解释[J]. 草业学报, 2010, 19(3): 29-37. |
[Zhao Huaibao, Liu Tong, Lei Jiaqiang, et al. β diversity characteristic of vegetation community on south part of Gurbantunggut Desert and its interpretation[J]. Acta Prataculturae Sinica, 2010, 19(3): 29-37. ] | |
[11] |
Miki T, Kondoh M. Feedbacks between nutrient cycling and vegetation predict plant species coexistence and invasion[J]. Ecology Letters, 2002, 5(5): 624-633.
doi: 10.1046/j.1461-0248.2002.00347.x |
[12] |
Rominger A J, Miller T E X, Collins S L. Relative contributions of neutral and niche-based processes to the structure of a desert grassland grasshopper community[J]. Oecologia, 2009, 161(4): 791-800.
doi: 10.1007/s00442-009-1420-z pmid: 19629531 |
[13] | 杨欢, 王寅, 王健铭, 等. 环境过滤和扩散限制对库姆塔格沙漠南缘植物群落β-多样性的影响[J]. 中国沙漠, 2021, 41(3): 147-154. |
[Yang Huan, Wang Yin, Wang Jianming, et al. Effects of environmental filtering and dispersal limitation on the β-diversity of plant communities in the southfringe of Kumtag Desert[J]. Journal of Desert Research, 2021, 41(3): 147-154. ] | |
[14] | Hu D, Jiang L, Hou Z, et al. Environmental filtration and dispersal limitation explain different aspects of beta diversity in desert plant communities[J]. Global Ecology and Conservation, 2022, 33: e01956. |
[15] |
Qian H, Ricklefs R E. Disentangling the effects of geographic distance and environmental dissimilarity on global patterns of species turnover[J]. Global Ecology and Biogeography, 2012, 21(3): 341-351.
doi: 10.1111/j.1466-8238.2011.00672.x |
[16] |
Legendre P, Mi X, Ren H, et al. Partitioning beta diversity in a subtropical broad-leaved forest of China[J]. Ecology, 2009, 90(3): 663-674.
pmid: 19341137 |
[17] |
Myers J A, Chase J M, Jiménez I, et al. Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly[J]. Ecology Letters, 2013, 16(2): 151-157.
doi: 10.1111/ele.12021 pmid: 23113954 |
[18] |
Bellier E, Grøtan V, Engen S, et al. Distance decay of similarity, effects of environmental noise and ecological heterogeneity among species in the spatio-temporal dynamics of a dispersal-limited community[J]. Ecography, 2014, 37(2): 172-182.
doi: 10.1111/j.1600-0587.2013.00175.x |
[19] | 何芳兰, 刘世增, 李昌龙, 等. 甘肃河西戈壁植物群落组成特征及其多样性研究[J]. 干旱区资源与环境, 2016, 30(4): 74-78. |
[He Fanglan, Liu Shizeng, Li Changlong, et al. Study on composition and diversity of phytocoenosium in Gobi region of Hexi, Gansu[J]. Journal of Arid Land Resources and Environment, 2016, 30(4): 74-78. ] | |
[20] | 王健铭, 董芳宇, 巴海·那斯拉, 等. 中国黑戈壁植物多样性分布格局及其影响因素[J]. 生态学报, 2016, 36(12): 3488-3498. |
[Wang Jianming, Dong Fangyu, Bahai Nasra, et al. Plant distribution patterns and the factors influencing plant diversity in the Black Gobi Desert of China[J]. Acta Ecologica Sinica, 2016, 36(12): 3488-3498. ] | |
[21] | 董雪, 李永华, 辛智鸣, 等. 河西走廊西段荒漠戈壁灌木群落物种多样性的海拔格局[J]. 林业科学, 2021, 57(2): 168-178. |
[Dong Xue, Li Yonghua, Xin Zhiming, et al. Patterns of altitudinal distribution of species diversity of desert gobi shrub communities in West Hexi Corridor of China[J]. Scientia Sllvae Sinicae, 2021, 57(2): 168-178. ] | |
[22] |
王国宏. 祁连山北坡中段植物群落多样性的垂直分布格局[J]. 生物多样性, 2002, 10(1): 7-14.
doi: 10.17520/biods.2002002 |
[Wang Guohong. Species diversity of plant communities along an altitudinal gradient in the middle section of northern slopes of Qilian Mountains, Zhangye, Gansu, China[J]. Biodiversity Science, 2002, 10(1): 7-14. ]
doi: 10.17520/biods.2002002 |
|
[23] |
朱源, 康慕谊, 江源, 等. 贺兰山木本植物群落物种多样性的海拔格局[J]. 植物生态学报, 2008, 32(3): 574-581.
doi: 10.3773/j.issn.1005-264x.2008.03.006 |
[Zhu Yuan, Kang Muyi, Jiang Yuan, et al. Altitudinal pattern of species diversity in woody plant communities of mountain Helan,northwestern China[J]. Journal of Plant Ecology, 2008, 32(3): 574-581. ]
doi: 10.3773/j.issn.1005-264x.2008.03.006 |
|
[24] |
Whittaker R H, Niering W A. Vegetation of the Santa Catalina Mountains, Arizona: A gradient analysis of the South slope[J]. Ecology, 1965, 46(4): 429-452.
doi: 10.2307/1934875 |
[25] | Glenn-Lewin D C. Species diversity in the North American temperate forests[J]. Vegetatio, 1977, 33: 153-162. |
[26] | 董雪, 李永华, 辛智鸣, 等. 河西走廊西段戈壁灌木群落多样性及其分布格局研究[J]. 干旱区地理, 2020, 43(6): 1514-1522. |
[Dong Xue, Li Yonghua, Xin Zhiming, et al. Gobi shrub species diversity and its distribution pattern in West Hexi Corridor[J]. Arid Land Geography, 2020, 43(6): 1514-1522. ] | |
[27] |
陈圣宾, 欧阳志云, 徐卫华, 等. Beta多样性研究进展[J]. 生物多样性, 2010, 18(4): 323-335.
doi: 10.3724/SP.J.1003.2010.323 |
[Chen Shengbin, Ouyang Zhiyun, Xu Weihua, et al. A review of beta diversity studies[J]. Biodiversity Science, 2010, 18(4): 323-335. ]
doi: 10.3724/SP.J.1003.2010.323 |
|
[28] |
Anderson M J, Crist T O, Chase J M, et al. Navigating the multiple meanings of β diversity: A roadmap for the practicing ecologist[J]. Ecology Letters, 2011, 14(1): 19-28.
doi: 10.1111/j.1461-0248.2010.01552.x pmid: 21070562 |
[29] |
Baselga A. Partitioning the turnover and nestedness components of beta diversity[J]. Global Ecology and Biogeography, 2010, 19(1): 134-143.
doi: 10.1111/j.1466-8238.2009.00490.x |
[30] |
斯幸峰, 赵郁豪, 陈传武, 等. Beta多样性分解: 方法、应用与展望[J]. 生物多样性, 2017, 25(5): 464-480.
doi: 10.17520/biods.2017024 |
[Si Xinfeng, Zhao Yuhao, Chen Chuanwu, et al. Beta-diversity partitioning: Methods, applications and perspectives[J]. Biodiversity Science, 2017, 25(5): 464-480. ]
doi: 10.17520/biods.2017024 |
|
[31] |
谭珊珊, 叶珍林, 袁留斌, 等. 百山祖自然保护区植物群落beta多样性[J]. 生态学报, 2013, 33(21): 6944-6956.
doi: 10.5846/stxb201207010920 |
[Tan Shanshan, Ye Zhenlin, Yuan Liubin, et al. Beta diversity of plant communities in Baishanzu Nature Reserve[J]. Acta Ecologica Sinica, 2013, 33(21): 6944-6956. ]
doi: 10.5846/stxb201207010920 |
|
[32] | Rosenzweig M L. Species Diversity in Space and Time[M]. Cambridgeshire United Kingdom: Cambridge University Press, 1995. |
[33] | 齐丹卉, 杨洪晓, 卢琦, 等. 浑善达克沙地植物群落物种多样性及环境解释[J]. 中国沙漠, 2021, 41(6): 1-13. |
[Qi Danhui, Yang Hongxiao, Lu Qi, et al. Biodiversity of plant communities and its environmental interpretation in the Otindag Sandy Land,China[J]. Journal of Desert Research, 2021, 41(6): 1-13. ] | |
[34] |
Gaston K J. Global patterns in biodiversity[J]. Nature, 2000, 405(6783): 220-227.
doi: 10.1038/35012228 |
[35] |
Rahbek C. The role of spatial scale and the perception of large-scale species-richness patterns[J]. Ecology Letters, 2005, 8(2): 224-239.
doi: 10.1111/j.1461-0248.2004.00701.x |
[36] | 朱媛君, 张璞进, 牛明丽, 等. 毛乌素沙地丘间低地主要植物群落土壤酶活性[J]. 生态学杂志, 2016, 35(8): 2014-2021. |
[Zhu Yuanjun, Zhang Pujin, Niu Mingli, et al. Soil enzyme activities of the main plant communities in inter-dune lowland of Mu Us Sandy Land[J]. Chinese Journal of Ecology, 2016, 35(8): 2014-2021. ] | |
[37] | 山丹, 朱媛君, 王百竹, 等. 呼伦贝尔沙地北部沙带植物群落分布格局与土壤特性的关系[J]. 中国沙漠, 2020, 40(1): 145-155. |
[Shan Dan, Zhu Yuanjun, Wang Baizhu, et al. Relationship between plant community distribution pattern and soil characteristics in northern sand belt of Hulunbuir Sandland[J]. Journal of Desert Research, 2020, 40(1): 145-155. ] | |
[38] |
Blundo C, González-Espinosa M, Malizia L R. Relative contribution of niche and neutral processes on tree species turnover across scales in seasonal forests of NW Argentina[J]. Plant Ecology, 2016, 217(4): 359-368.
doi: 10.1007/s11258-016-0577-x |
[39] |
Soininen J, McDonald R, Hillebrand H. The distance decay of similarity in ecological communities[J]. Ecography, 2007, 30(1): 3-12.
doi: 10.1111/j.0906-7590.2007.04817.x |
[40] |
翁昌露, 张田田, 巫东豪, 等. 古田山10种主要森林群落类型的α和β多样性格局及影响因素[J]. 生物多样性, 2019, 27(1): 33-41.
doi: 10.17520/biods.2018171 |
[Weng Changlu, Zhang Tiantian, Wu Donghao, et al. Drivers and patterns of α-and β-diversity in ten main forest community types in Gutianshan, eastern China[J]. Biodiversity Science, 2019, 27(1): 33-41. ]
doi: 10.17520/biods.2018171 |
|
[41] |
Zhang J L, Swenson N G, Chen S B, et al. Phylogenetic beta diversity in tropical forests: Implications for the roles of geographical and environmental distance[J]. Journal of Systematics and Evolution, 2013, 51(1): 71-85.
doi: 10.1111/j.1759-6831.2012.00220.x |
[42] |
Qian H, Kissling W D. Spatial scale and cross-taxon congruence of terrestrial vertebrate and vascular plant species richness in China[J]. Ecology, 2010, 91(4): 1172-1183.
pmid: 20462131 |
[1] | ZHAO Yuqi, WEI Tianxing. Changes in vegetation cover and influencing factors in typical counties of the Loess Plateau from 1990 to 2020 [J]. Arid Zone Research, 2024, 41(1): 147-156. |
[2] | HU Guanglu,TAO Hu,JIAO Jiao,BAI Yuanru,CHEN Haizhi,MA Jin. Runoff trend and attribution analysis of the Zhengyi Gorge in the middle reaches of the Heihe River [J]. Arid Zone Research, 2023, 40(9): 1414-1424. |
[3] | ZHOU Xiaodong, CHANG Shunli, WANG Guanzheng, ZHANG Yutao, YU Shulong, ZHANG Tongwen. Radial growth response of Picea schrenkiana to climate change in the middle section of the northern slope of the Tianshan Mountains [J]. Arid Zone Research, 2023, 40(8): 1215-1228. |
[4] | MENG Chengfeng, ZHONG Tao, ZHENG Jianghua, WANG Nan, LIU Zexuan, REN Xiangyuan. Analysis of temporal and spatial characteristics and driving forces of Kunlun glacial lakes [J]. Arid Zone Research, 2023, 40(7): 1094-1106. |
[5] | ZHAO Yanfen, PAN Borong. Potential geographical distributions of Tugarinovia in China under climate change scenarios [J]. Arid Zone Research, 2023, 40(6): 949-957. |
[6] | YAO Chunyan, LIU Honghu, LIU Jing. Variation of runoff and sediment in the headwaters of the Yangtze River from 1980 to 2020 [J]. Arid Zone Research, 2023, 40(5): 726-736. |
[7] | DONG Hanlin, WANG Wenting, XIE Yun, Aydana YESINALI, JIANG Yuantian, XU Jiaqi. Climate dry-wet conditions, changes, and their driving factors in Xinjiang [J]. Arid Zone Research, 2023, 40(12): 1875-1884. |
[8] | WANG Juan, WANG Zhao, GUO Bin, HE Huijuan, DONG Jinfang. Spatiotemporal characteristics of vegetation carbon use efficiency and its sensitivity to climate in the Yellow River Basin in Shaanxi Province [J]. Arid Zone Research, 2023, 40(12): 1959-1968. |
[9] | WANG Yi’en, RAO Liangyi. Impact of climatic factors and human activities on the net primary productivity of the vegetation in the Pisha sandstone area [J]. Arid Zone Research, 2023, 40(12): 1982-1995. |
[10] | DAI Jun, HU Haizhu, MAO Xiaomin, ZHANG Ji. Future climate change trends in the Shiyang River Basin based on the CMIP6 multi-model estimation data [J]. Arid Zone Research, 2023, 40(10): 1547-1562. |
[11] | FU Shasha, PENG Wei, SHAO Aimei, CAI Dihua, LUO Miaoxin, LIU Zhaojing. Variations in the NDVI characteristics during the summer and the climatic factor responses in the Qinling-Daba Mountains [J]. Arid Zone Research, 2023, 40(10): 1563-1574. |
[12] | YAO Daijun, LIU Kang, HUI Yuxiang, WANG Kaixin. The response and mechanism of Pinus tabulaeformis tree-ring width to climate change in Maijishan Mountain, Tianshui, China [J]. Arid Zone Research, 2023, 40(1): 19-29. |
[13] | CHEN Hongguang, MENG Fanhao, SA Chula, LUO Min, WANG Mulan, LIU Guixiang. Analysis of the characteristics of runoff evolution and its driving factors in a typical inland river basin in arid regions [J]. Arid Zone Research, 2023, 40(1): 39-50. |
[14] | WU Xiaodan,LUO Min,MENG Fanhao,SA Chula,YIN Chaohua,BAO Yuhai. New characteristics of spatio-temporal evolution of extreme climate events in Xinjiang under the background of warm and humid climate [J]. Arid Zone Research, 2022, 39(6): 1695-1705. |
[15] | ZHANG Haochen,SA Chula,MENG Fanhao,LUO Min,WANG Mulan,GAO Hongdou,ADIYA Saruulzaya. Dynamic changes and driving factors of the surface freeze-thaw index in Inner Mongolia [J]. Arid Zone Research, 2022, 39(6): 1996-2008. |
|