Arid Zone Research ›› 2022, Vol. 39 ›› Issue (4): 1293-1302.doi: 10.13866/j.azr.2022.04.29
• Agricultural Ecology • Previous Articles Next Articles
WANG Jiawen1(),PENG Jie1(
),JI Wenjun2,BAI Jianduo1,FENG Chunhui1,LI Hongyi3
Received:
2021-06-22
Revised:
2021-10-29
Online:
2022-07-15
Published:
2022-09-26
Contact:
Jie PENG
E-mail:wjwzky@126.com;pjzky@163.com
WANG Jiawen,PENG Jie,JI Wenjun,BAI Jianduo,FENG Chunhui,LI Hongyi. Soil pH inversion based on electromagnetic induction data in cotton field of southern Xinjiang[J].Arid Zone Research, 2022, 39(4): 1293-1302.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 2
Statistical characteristics of soil pH of the soil samples from each sample area (n=486)"
样地 | 样本数 | 最大值 | 最小值 | 均值 | 标准差 | 变异系数/% |
---|---|---|---|---|---|---|
1 | 18 | 9.02 | 7.96 | 8.58 | 0.38 | 4.43 |
2 | 18 | 8.80 | 8.03 | 8.47 | 0.18 | 2.16 |
3 | 18 | 8.72 | 7.46 | 8.09 | 0.39 | 4.83 |
4 | 18 | 8.93 | 7.55 | 8.31 | 0.43 | 5.20 |
5 | 18 | 8.94 | 7.83 | 8.43 | 0.34 | 3.99 |
6 | 18 | 8.59 | 7.55 | 8.20 | 0.32 | 3.94 |
7 | 18 | 8.99 | 7.89 | 8.41 | 0.35 | 4.17 |
8 | 18 | 8.66 | 7.66 | 8.29 | 0.31 | 3.68 |
9 | 18 | 9.09 | 7.81 | 8.34 | 0.48 | 5.75 |
Tab. 3
Pearson correlation coefficients between soil pH and soil apparent conductivity in different soil layers"
ECh0.375 | ECh0.75 | ECv0.75 | ECv1.0 | pH0.375 | pH0.75 | pH1.0 | |
---|---|---|---|---|---|---|---|
ECh0.375 | 1 | ||||||
ECh0.75 | 0.96** | 1 | |||||
ECv0.75 | 0.94** | 0.97** | 1 | ||||
ECv1.0 | 0.79** | 0.91** | 0.92** | 1 | |||
pH0.375 | -0.30** | -0.34** | -0.28** | -0.31** | 1 | ||
pH0.75 | -0.44** | -0.45** | -0.46** | -0.45** | 0.50** | 1 | |
pH1.0 | -0.42** | -0.42** | -0.43** | -0.42** | 0.53** | 0.82** | 1 |
Tab. 4
Determination coefficients of the model for a soil layers relative to soil depth and modeling factors"
土层/m | 建模因子 | |||||
---|---|---|---|---|---|---|
ECh0.375 | (ECh0.75+ECv0.75)/2 | ECv1.0 | ECh0.375+(ECh0.75+ECv0.75)/2 | (ECh0.75+ECv0.75)/2+ECv1.0 | ECh0.375+(ECh0.75+ECv0.75)/2+ECv1.0 | |
0~0.375 | 0.80 | 0.76 | 0.72 | 0.87 | 0.83 | 0.88 |
0.375~0.75 | 0.67 | 0.62 | 0.56 | 0.84 | 0.78 | 0.84 |
0.75~1.00 | 0.81 | 0.80 | 0.79 | 0.82 | 0.80 | 0.84 |
Tab. 6
Different samples pH inversion model accuracy"
样地 | 土层/m | R2 | RMSE | RPD |
---|---|---|---|---|
1 | 0~0.375 | 0.77 | 0.03 | 2.01 |
0.375~0.75 | 0.79 | 0.04 | 2.17 | |
0.75~1.00 | 0.87 | 0.01 | 2.07 | |
2 | 0~0.375 | 0.87 | 0.04 | 2.02 |
0.375~0.75 | 0.83 | 0.08 | 2.07 | |
0.75~1.00 | 0.82 | 0.05 | 2.18 | |
3 | 0~0.375 | 0.93 | 0.04 | 3.50 |
0.375~0.75 | 0.75 | 0.10 | 2.00 | |
0.75~1.00 | 0.84 | 0.03 | 2.02 | |
4 | 0~0.375 | 0.75 | 0.12 | 2.13 |
0.375~0.75 | 0.89 | 0.09 | 2.94 | |
0.75~1.00 | 0.90 | 0.09 | 3.09 | |
5 | 0~0.375 | 0.83 | 0.08 | 2.30 |
0.375~0.75 | 0.84 | 0.10 | 2.29 | |
0.75~1.00 | 0.74 | 0.08 | 2.11 | |
6 | 0~0.375 | 0.87 | 0.12 | 2.14 |
0.375~0.75 | 0.87 | 0.06 | 2.06 | |
0.75~1.00 | 0.88 | 0.05 | 2.25 | |
7 | 0~0.375 | 0.89 | 0.04 | 2.08 |
0.375~0.75 | 0.81 | 0.08 | 2.13 | |
0.75~1.00 | 0.79 | 0.06 | 2.08 | |
8 | 0~0.375 | 0.81 | 0.08 | 2.32 |
0.375~0.75 | 0.85 | 0.08 | 2.50 | |
0.75~1.00 | 0.90 | 0.11 | 2.21 | |
9 | 0~0.375 | 0.77 | 0.08 | 2.01 |
0.375~0.75 | 0.89 | 0.07 | 2.03 | |
0.75~1.00 | 0.89 | 0.07 | 2.21 |
[1] | Gardi C, Yigini Y. Continuous mapping of soil pH using digital soil mapping approach in Europe[J]. Eurasian Journal of Soil Science, 2012, 1(2): 64-68. |
[2] | 谷晓静. 陕西省泾惠渠灌区土壤质量分析与评价[D]. 西安: 长安大学, 2009. |
[Gu Xiaojing. Analysis and Assessment of Soil Quality in Jinghuiqu Irrigation District, Shaanxi Province[D]. Xi’an: Chang’an University, 2009.] | |
[3] |
巩杰, 陈利顶, 傅伯杰, 等. 黄土丘陵区小流域土地利用和植被恢复对土壤质量的影响[J]. 应用生态学报, 2004, 15(12): 2292-2296.
pmid: 15825444 |
[Gong Jie, Chen Liding, Fu Bojie, et al. Effects of land use and vegetation restoration on soil quality in small catchment of the Loess Plateau[J]. Chinese Journal of Applied Ecology, 2004, 15(12): 2292-2296.]
pmid: 15825444 |
|
[4] | 高海峰, 白军红, 王庆改, 等. 霍林河下游典型洪泛区湿地土壤pH值和土壤含水量分布特征[J]. 水土保持研究, 2011, 18(1): 268-271. |
[Gao Haifeng, Bai Junhong, Wang Qinggai, et al. Distribution of soil pH values and soil water contents in floodplain wetlands in the lower reach of Huolin River[J]. Research of Soil and Water Conservation, 2011, 18(1): 268-271.] | |
[5] | 李涛, 于蕾, 万广华, 等. 近30年山东省耕地土壤pH值时空变化特征及影响因素[J]. 土壤学报, 2021, 58(1): 180-190. |
[Li Tao, Yu Lei, Wan Guanghua, et al. Spatio-temporal variation of farmland soil pH and associated affecting factors in the past 30 years of Shandong Province, China[J]. Acta Pedologica Sinica, 2021, 58(1): 180-190.] | |
[6] | 阿斯古丽·木萨, 阿不都拉·阿不力孜, 瓦哈甫·哈力克, 等. 新疆克里雅绿洲土壤盐分、pH和盐基离子空间异质性分析[J]. 土壤, 2017, 49(5): 1007-1014. |
[Asigul Musa, Abdulla Abliz, Wahap Halik, et al. Spatial heterogeneity of soil salinity, pH and base cations in Keriya Oasis of Xinjiang[J]. Solis, 2017, 49(5): 1007-1014.] | |
[7] | 张玲玉, 赵学强, 沈仁芳. 土壤酸化及其生态效应[J]. 生态学杂志, 2019, 38(6): 1900-1908. |
[Zhang Lingyu, Zhao Xueqiang, Shen Renfang. Soil acidification and its ecological effects[J]. Chinese Journal of Ecology, 2019, 38(6): 1900-1908.] | |
[8] |
Sun Y, Guo G, Shi H, et al. Decadal shifts in soil pH and organic matter differ between land uses in contrasting regions in China[J]. Science of the Total Environment, 2020, 740: 139904.
doi: 10.1016/j.scitotenv.2020.139904 |
[9] |
郭治兴, 王静, 柴敏, 等. 近30年来广东省土壤pH值的时空变化[J]. 应用生态学报, 2011, 22(2): 425-430.
pmid: 21608257 |
[Guo Zhixing, Wang Jing, Chai Min, et al. Spatiotemporal variation of soil pH in Guangdong Province of China in past 30 years[J]. Chinese Journal of Applied Ecology, 2011, 22(2): 425-430.]
pmid: 21608257 |
|
[10] | 白树彬, 裴久渤, 李双异, 等. 30年来辽宁省耕地土壤有机质与pH时空动态变化[J]. 土壤通报, 2016, 47(3): 636-644. |
[Bai Shubin, Pei Jiubo, Li Shuangyi, et al. Temporal and spatial dynamics of soil organic matter and pH in cultivated land of Liaoning Province during the past 30 years[J]. Chinese Journal of Soil Science, 2016, 47(3): 636-644.] | |
[11] |
王寅, 张馨月, 高强, 等. 吉林省农田耕层土壤pH值的时空变化特征[J]. 土壤通报, 2017, 48(2): 387-391.
doi: 10.1111/j.1365-2389.1997.tb00205.x |
[Wang Yin, Zhang Xinyue, Gao Qiang, et al. Temporal and spatial variability of soil pH in the cropland of Jilin Province[J]. Chinese Journal of Soil Science, 2017, 48(2): 387-391.]
doi: 10.1111/j.1365-2389.1997.tb00205.x |
|
[12] | 潘永敏, 华明, 廖启林, 等. 宜兴地区土壤pH值的分布特征及时空变化[J]. 物探与化探, 2018, 42(4): 825-832. |
[Pan Yongmin, Hua Ming, Liao Qilin, et al. Distribution properties and time-series comparisons of soil pH-values in Yixing area[J]. Geophysical and Geochemical Exploration, 2018, 42(4): 825-832.] | |
[13] | 张丽丽, 史庆华, 巩彪. 中、碱性土壤条件下黄腐酸与磷肥配施对番茄生育和磷素利用率的影响[J]. 中国农业科学, 2020, 53(17): 3567-3575. |
[Zhang Lili, Shi Qinghua, Gong Biao. Application of fulvic acid and phosphorus fertilizer on tomato growth, development, and phosphorus utilization in neutral and alkaline soil[J]. Scientia Agricultura Sinica, 2020, 53(17): 3567-3575.] | |
[14] | 蒋志云, 李小雁, 张志华, 等. 基于EM38电导率仪土壤水分探测研究[J]. 干旱区研究, 2015, 32(1): 48-55. |
[Jiang Zhiyun, Li Xiaoyan, Zhang Zhihua, et al. EM38 for soil moisture content estimation in the farming-pastoral ecotone in inner mongolia[J]. Arid Zone Research, 2015, 32(1): 48-55.] | |
[15] | 赵长巍. 吉林省西部盐渍土空间变异性与均质化改良研究[D]. 北京: 中国科学院大学, 2014. |
[Zhao Changwei. Spatial Variations and Homogenized Reclamation of Sodic Soil of West Jilin Province[D]. Beijing: Northeast Institute of Geography and Agro-Ecology, CAS, 2014.] | |
[16] | 刘新路, 彭杰, 冯春晖, 等. 基于电磁感应仪数据的南疆棉田土壤电导率反演模型研究[J]. 土壤学报, 2020, 57(3): 646-655. |
[Liu Xinlu, Peng Jie, Feng Chunhui, et al. Inversion model for soil conductivity in cotton field in South Xinjiang based on EM38-MK2 data[J]. Acta Pedologica Sinica, 2020, 57(3): 646-655.] | |
[17] | 彭杰. 荒漠土壤盐渍化遥感监测与开垦方案分析——以空台里克冲积扇为例[D]. 杭州: 浙江大学, 2019. |
[Peng Jie. Salinization Monitoring and Reclamation Strategy Analysis in Desert Soils using Remote Sensing: A Case Study in the Kongtailike Alluvial Fan[D]. Hangzhou: Zhejiang University, 2019.] | |
[18] |
Saeys W, Mouazen A M, Ramon H. Potential for onsite and online analysis of pig manure using visible and near infrared reflectance spectroscopy[J]. Biosystems Engineering, 2005, 91(4): 393-402.
doi: 10.1016/j.biosystemseng.2005.05.001 |
[19] | 宋江辉, 朱永琪, 陈建华, 等. 基于电磁感应仪的土壤盐渍化剖面特征解译研究[J]. 土壤通报, 2017, 48(3): 552-559. |
[Song Jianghui, Zhu Yongqi, Chen Jianhua, et al. Interpretation of soil profile salinization characteristics based on electromagnetic inductor[J]. Chinese Journal of Soil Science, 2017, 48(3): 552-559.] | |
[20] | 吕真真, 杨劲松, 刘广明. 基于EM38-MK2的滨海土壤电导率精确解译模型[J]. 排灌机械工程学报, 2014, 32(10): 894-900. |
[Lyu Zhenzhen, Yang Jingsong, Liu Guangming. Accurate models of interpreting soil electrical conductivity based on EM38-MK2[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 32(10): 894-900.] | |
[21] |
Heil K, Schmidhalter U. Comparison of the EM38 and EM38-MK2 electromagnetic induction-based sensors for spatial soil analysis at field scale[J]. Computers and Electronics in Agriculture, 2015, 110: 267-280.
doi: 10.1016/j.compag.2014.11.014 |
[22] | 李洪义. 滨海盐土三维土体电导率空间变异及可视化研究[D]. 杭州: 浙江大学, 2008. |
[Li Hongyi. Three Dimensional Variability and Visualization of Soil Electrical Conductity in Coastal Saline Land[D]. Hangzhou: Zhejiang University, 2008.] | |
[23] | 魏孝荣, 邵明安. 黄土沟壑区小流域土壤pH值的空间分布及条件模拟[J]. 农业工程学报, 2009, 25(5): 61-67. |
[Wei Xiaorong, Shao Ming’an. Spatial distribution and conditional simulation of soil pH values in small watershed of loessial gully region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(5): 61-67.] | |
[24] | 弋鹏飞, 虎胆·吐马尔白, 吴争光, 等. 棉田膜下滴灌年限对土壤盐分累积的影响研究[J]. 水土保持研究, 2010, 17(5): 118-122. |
[Yi Pengfei, Hudan Tumaerbai, Wu Zhengguang, et al. Research on soil salt accumulation influence by the years of covered cotton under drip irrigation[J]. Research of Soil and Water Conservation, 2010, 17(5): 118-122.] | |
[25] |
Aitken R L, Moody P W. Interrelations between soil pH measurements in various electrolytes and soil solution pH in Acidic Soils[J]. Soil Research, 1991, 29(4): 483-491.
doi: 10.1071/SR9910483 |
[26] |
Miller R O, Kissel D E. Comparison of soil pH methods on soils of North America[J]. Soil Science Society of America Journal, 2010, 74(1): 310-316.
doi: 10.2136/sssaj2008.0047 |
[27] |
Minasny B, McBratney A B, Brough D M, et al. Models relating soil pH measurements in water and calcium chloride that incorporate electrolyte concentration[J]. European Journal of Soil Science, 2011, 62(5): 728-732.
doi: 10.1111/j.1365-2389.2011.01386.x |
[1] | DU Huadong, LIU Yan, BI Yinli, CHE Xuxi, BAI Mengtong. Characteristics of soil properties and fungal community changes in different microgeomorphic units in an arid gravel desert area [J]. Arid Zone Research, 2024, 41(3): 421-431. |
[2] | BAI Lili, WANG Wenying, Dequelamu , LIU Yanfang, DENG Yanfang. Elevational variations in ecological soil C, N, and P stoichiometry among five typical vegetation types in the Qilian Mountains [J]. Arid Zone Research, 2024, 41(3): 444-455. |
[3] | WEN Miao, MAO Xinping, YANG Jiejun, SUN Jiayi, WU Xudong, HAN Fengpeng. Abundance characteristics of soil nutrients and nitrogen cycle functional genes in the natural and artificial vegetation of desert grasslands [J]. Arid Zone Research, 2024, 41(12): 2027-2034. |
[4] | ZHU Tiantian, HAI Lu, CAO Wenxu, LI Xu, LI Qinghe. Effects of Caragana microphylla on vegetation and soil in the restoration of desertified grasslands [J]. Arid Zone Research, 2024, 41(11): 1875-1886. |
[5] | GAO Junliang, LUO Fengmin, LIU Hongxin, QIAO Jingran, YU Meng, XU Yaxin. Effects of typical ecological projects of desertification combating on soil physical properties in Ulan Buh Desert [J]. Arid Zone Research, 2023, 40(5): 737-746. |
[6] | ZHAO Yuzhi, YANG Jianjun. Spatio-temporal pattern of water resource carrying capacity, coupling and coordination of subsystems in southern Xinjiang [J]. Arid Zone Research, 2023, 40(2): 213-223. |
[7] | LIU Guanheng, WU Guanyu, LI Jiande, WANG Jian, YANG Qinxia, XUE Dong. Equivalent pore size characteristics in the soil physical crust [J]. Arid Zone Research, 2023, 40(10): 1608-1614. |
[8] | ZHAO Chenguang,LI Huiying,YU Tengfei,CHEN Weiyu,XIE Zongcai,ZHANG Binwu,ZHANG Jun. Effects of artificial vegetation construction on soil physical properties in the northeastern edge of Tengger Desert [J]. Arid Zone Research, 2022, 39(4): 1112-1121. |
[9] | DING Ya,YANG Jianming,LI Li,ZHANG Zhihao,ZENG Fanjiang. Effects of deficit irrigation and film mulching on biomass and production of Cyperus esculentus in the southern Xinjiang Basin [J]. Arid Zone Research, 2022, 39(3): 883-892. |
[10] | ZHOU Yanli,WU Haimei,ZHOU Yandong,SHANG Xumin,PANG Lei. Effects of different short-term straw returning methods on soil structure and water content [J]. Arid Zone Research, 2022, 39(2): 502-509. |
[11] | ZHANG Zulian,MAO Weiyi,YAO Yanli,ZHANG Shanqing,GU Yawen. Detailed analysis of the characteristics of dry-hot wind in southern Xinjiang in 2020 [J]. Arid Zone Research, 2022, 39(1): 84-93. |
[12] | HU Yawei,SUN Ruoxiu,SHEN Mingshuang,SHI Zhengle,LIU Chang,XU Qintao,LIU Junting,ZHANG Jianjun. Effects of land use types on the stoichiometric characteristics of soil C:N:P and the physical and chemical properties of soil in western Shanxi loess region [J]. Arid Zone Research, 2021, 38(4): 990-999. |
[13] | YANG Xia,ZHOU Hongkui,XU Tingting,HUA Ye. Comparative analysis of the fine characteristics of different rainstorms in southern Xinjiang during summer [J]. Arid Zone Research, 2021, 38(3): 747-756. |
[14] | HE Hongsheng,TIAN Qing,WANG Lide,MENG Cunhong,HE Fanglan,GUO Chunxiu,WU Hao. Study on vegetation community characteristics and soil physical and chemical properties of abandoned land in Qingtu Lake [J]. Arid Zone Research, 2021, 38(1): 223-232. |
[15] | YANG Xiaodong,LV Guanghui,HE Xueming,LI Yan,ZHANG Xueni,WANG Xiyuan,LIU Weiguo. Variation of Soil Enzyme Activity among Four Typical Plant Communities in the Ebinur Lake Wetland Nature Reserve,Xinjiang [J]. , 2017, 34(6): 1278-1285. |
|