Arid Zone Research ›› 2023, Vol. 40 ›› Issue (5): 737-746.doi: 10.13866/j.azr.2023.05.06
• Land and Water Resources • Previous Articles Next Articles
GAO Junliang1,2,3,4(),LUO Fengmin1,2,3,4(),LIU Hongxin5,QIAO Jingran1,3,YU Meng1,3,XU Yaxin1,3
Received:
2023-03-09
Revised:
2023-05-03
Online:
2023-05-15
Published:
2023-05-30
GAO Junliang, LUO Fengmin, LIU Hongxin, QIAO Jingran, YU Meng, XU Yaxin. Effects of typical ecological projects of desertification combating on soil physical properties in Ulan Buh Desert[J].Arid Zone Research, 2023, 40(5): 737-746.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Sampling site situation of three different sampling site"
样地编号 | 样地名称 | 样地概况 |
---|---|---|
1 | 草方格沙障+花棒 | 2013年春季,在流沙地上铺设草方格沙障,规格1 m×1 m,沙障铺设后在障格内种植花棒,种植规格2 m×2 m,每坑种植2~4株。目前保存率63%,10 m×10 m的样方保存数量平均为16株,平均株高2.25 m,冠幅253 cm×314 cm,单丛分枝数平均8枝,平均地径4.5 cm,冠幅下地表覆盖1.5 cm厚度的花棒同化枝枯枝,几乎无风蚀。林下草本植物以沙蓬、猪毛菜、雾冰藜、虫实为主 |
2 | 草方格沙障+梭梭 | 2013年春季,在流沙地上铺设草方格沙障,规格1 m×1 m,沙障铺设后在障格内种植梭梭,种植规格2 m×2 m,每坑种植2~4株。目前保存率70%,10 m×10 m的样方保存数量平均为18株,平均株高2.15 m,冠幅205 cm×298 cm,单丛分枝数平均5枝,平均地径5.6 cm,梭梭枝干周围有物理结皮。林下草本植物以沙蓬、猪毛菜、雾冰藜、虫实、沙鞭等为主 |
3 | 流沙地 | 未治理,地表植被很少,仅有零星的沙蓬和虫实,1 m×1 m的样方内沙蓬和虫实数量为9株 |
Tab. 2
Soil porosity characteristics of three different sampling site"
土层深度/cm | 总孔隙度/% | 毛管孔隙度/% | 非毛管孔隙度/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
花棒林 | 梭梭林 | 流沙地 | 花棒林 | 梭梭林 | 流沙地 | 花棒林 | 梭梭林 | 流沙地 | |||
0~10 | 39.23±0.67 Aa | 36.79±0.46 Bb | 37.51±0.14 Ba | 31.18±2.29 Aa | 27.02±2.59 Bc | 29.45±4.26 Ba | 8.04±1.90 Ba | 9.77±2.99 Aab | 8.06±2.46 Ba | ||
10~20 | 39.62±0.88 Aa | 38.41±1.86 Aab | 37.89±0.21 Aa | 29.62±5.36 Aa | 29.65±1.12 Ab | 28.88±2.25 Aa | 10.00±5.97 Aa | 8.76±2.16 Bb | 9.01±2.22 ABa | ||
20~40 | 39.86±0.74 Aa | 40.08±0.42 Aa | 37.42±0.16 Ba | 30.33±5.86 Aa | 28.36±2.29 Bb | 28.21±1.47 Ba | 9.53±6.54 Ba | 11.72±2.62 Aa | 9.21±1.57 Ba | ||
40~60 | 39.61±1.79 Aa | 40.88±1.00 Aa | 37.69±0.44 Ba | 31.19±4.43 ABa | 33.51±1.44 Aa | 28.99±2.30 Ba | 8.42±5.26 Aa | 7.37±2.09 Ab | 8.70±1.89 Aa | ||
60~80 | 39.88±1.23 Aa | 40.10±0.65 Aa | 37.65±0.68 Ba | 30.75±2.08 Aa | 28.20±5.93 Bb | 28.84±2.14 Ba | 9.12±1.02 Ba | 11.90±5.44 Aa | 8.81±2.16 Ba | ||
80~100 | 39.78±1.10 Aa | 37.96±1.13 Bb | 37.47±0.51 Ba | 30.01±2.88 Aa | 29.34±5.95 Ab | 28.45±3.00 Aa | 9.77±1.55 Aa | 8.62±4.82 Ab | 9.02±1.48 Aa | ||
0~100 | 39.66±0.22 | 39.04±1.43 | 37.61±0.16 | 30.51±0.58 | 29.35±2.05 | 28.80±0.40 | 9.15±0.71 | 9.69±1.65 | 8.83±0.37 |
Tab. 3
Soil water capacity characteristics of three different sampling site"
土层深度/ cm | 饱和持水量/% | 毛管持水量/% | 田间持水量/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
花棒林 | 梭梭林 | 流沙地 | 花棒林 | 梭梭林 | 流沙地 | 花棒林 | 梭梭林 | 流沙地 | |||
0~10 | 25.81±0.84 Aa | 23.10±0.54 Ab | 24.05±0.14 Aa | 22.46±0.83 Aa | 16.96±1.56 Bc | 19.55±0.34 ABa | 21.02±1.20 Aa | 15.96±1.35 Ba | 14.40±0.56 Ba | ||
10~20 | 25.73±0.68 Aa | 25.06±1.96 Aab | 24.48±0.35 Aa | 19.24±3.56 Ab | 19.32±0.93 Ab | 19.15±1.01 Aa | 18.07±3.07 Ab | 18.01±0.65 Ab | 14.74±1.23 Ba | ||
20~40 | 26.43±0.59 Aa | 26.99±0.19 Aa | 23.94±0.15 Ba | 20.10±3.78 Aab | 19.10±1.61 Ab | 18.68±0.33 Aa | 18.25±2.70 Ab | 17.88±1.11 Ab | 15.45±0.82 Ba | ||
40~60 | 27.21±1.25 Aa | 27.73±0.88 Aa | 24.25±0.44 Ba | 21.39±2.77 Aa | 22.73±1.17 Aa | 19.22±0.81 Ba | 20.09±2.47 Aab | 20.21±0.41 Aa | 15.83±1.20 Ba | ||
60~80 | 26.45±1.13 Aa | 27.18±0.84 Aa | 24.21±0.38 Ba | 20.41±1.59 Aab | 16.40±4.07 Bc | 19.12±0.54 Aa | 19.69±1.64 Aab | 15.42±3.82 Ba | 15.75±0.47 Ba | ||
80~100 | 27.22±0.55 Aa | 25.37±1.15 ABab | 24.00±0.22 Ba | 20.54±1.21 Aab | 19.64±4.26 Ab | 18.85±0.10 Aa | 18.99±2.12 Aab | 17.79±3.84 Ab | 15.59±0.28 Ba | ||
0~100 | 26.48±0.59 | 25.91±1.58 | 24.16±0.18 | 20.69±1.01 | 19.03±2.06 | 19.10±0.28 | 19.35±1.04 | 17.55±1.56 | 15.29±0.53 |
Tab. 4
Soil water storage characteristics of three different sampling site"
土层深度/cm | 饱和贮水量/(t·hm-2) | 吸持贮水量/(t·hm-2) | 滞留贮水量/(t·hm-2) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
花棒林 | 梭梭林 | 流沙地 | 花棒林 | 梭梭林 | 流沙地 | 花棒林 | 梭梭林 | 流沙地 | |||
0~10 | 39.23±0.67 Aa | 36.79±0.46 Bb | 37.51±0.14 Ba | 31.18±2.29 Aa | 27.02±2.59 Bb | 29.45±4.26 ABa | 8.04±1.90 Ba | 9.77±2.99 Aab | 8.06±2.46 Ba | ||
10~20 | 39.62±0.88 Aa | 38.41±1.86 Ab | 37.89±0.21 Aa | 29.62±5.36 Aa | 29.65±1.12 Ab | 28.88±2.25 Aa | 10.00±5.97 Aa | 8.76±2.16 Bb | 9.01±2.22 ABa | ||
20~40 | 39.86±0.74 Aa | 40.08±0.42 Aa | 37.42±0.16 Ba | 30.33±5.86 Aa | 28.36±2.29 Ab | 28.21±1.47 Aa | 9.53±6.54 Ba | 11.72±2.62 Aa | 9.21±1.57 Ba | ||
40~60 | 39.61±1.79 Aa | 40.88±1.00 Aa | 37.99±0.44 Ba | 31.19±4.43 ABa | 33.51±1.44 Aa | 28.99±2.30 Ba | 8.42±5.26 Aa | 7.37±2.09 Ab | 8.70±1.89 Aa | ||
60~80 | 39.88±1.23 Aa | 40.10±0.65 Aa | 37.65±0.68 Ba | 30.75±2.08 Aa | 28.20±5.93 Ab | 28.84±2.14 Aa | 9.12±1.02 ABa | 11.90±5.44 Aa | 8.81±2.16 Ba | ||
80~100 | 39.78±1.10 Aa | 37.96±1.13 Ab | 37.47±0.51 Aa | 30.01±2.88 Aa | 29.34±5.95 Ab | 28.45±3.00 Aa | 9.77±1.55 Aa | 8.62±4.82 Ab | 9.02±1.48 Aa | ||
0~100 | 237.98 | 234.22 | 225.93 | 183.08 | 176.08 | 172.82 | 54.88 | 58.14 | 52.81 |
[1] | 昝国盛, 王翠萍, 李锋, 等. 第六次全国荒漠化和沙化调查主要结果及分析[J]. 林业资源管理, 2023, 52(1): 1-7. |
[Zan Guosheng, Wang Cuiping, Li Feng, et al. Key data results and trend analysis of the sixth national survey on desertification and sandificationg[J]. Forest Resources Mangement, 2023, 52(1): 1-7. ] | |
[2] | 卢琦, 雷加强, 李晓松, 等. 大国治沙: 中国方案与全球范式[J]. 中国科学院院刊, 2020, 35(6): 656-664. |
[Lu Qi, Lei Jiaqiang, Li Xiaosong, et al. China’s combating desertification: National solutions and global paradigm[J]. Bulletin of the Chinese Academy of Sciences, 2020, 35(6): 656-664. ] | |
[3] | 唐永发, 熊东红, 张宝军, 等. 雅江河谷中段典型防沙治沙生态工程对沙地持水性能的改良效应[J]. 山地学报, 2021, 39(4): 461-472. |
[Tang Yongfa, Xiong Donghong, Zhang Baojun, et al. Study on the water holding capacity of aeolian sandy land impacted by different typical vegetation ecological projects in the middle part of Yarlungzangbo River Valley, Tibet, China[J]. Mountain Research, 2021, 39(4): 461-472. ] | |
[4] | 李尝君, 曾凡江, 郭京衡, 等. 植被恢复程度与沙地土壤性质——以塔克拉玛干沙漠南缘为例[J]. 干旱区研究, 2015, 32(6): 1061-1067. |
[Li Changjun, Zeng Fanjiang, Guo Jingheng, et al. Soil properties of different sandy lands under different vegetation recovering levels: A case in southern Taklimakan Desert[J]. Arid Zone Research, 2015, 32(6): 1061-1067. ] | |
[5] |
田丽慧, 张登山, 彭继平, 等. 高寒沙地人工植被恢复区地表沉积物粒度特征[J]. 中国沙漠, 2015, 35(1): 32-39.
doi: 10.7522/j.issn.1000-694X.2014.00186 |
[Tian Lihui, Zhang Dengshan, Peng Jiping, et al. Grain size of land surface deposits in a vegetation restoration region of the alpine sandyland in Qinghai, China[J]. Journal of Desert Research, 2015, 35(1): 32-39. ]
doi: 10.7522/j.issn.1000-694X.2014.00186 |
|
[6] | 付鹏程, 胡广录, 巩炜, 等. 河西走廊沙漠-绿洲过渡带固沙植物根区土壤物理性质及持水特性[J]. 土壤通报, 2021, 52(4): 811-820. |
[Fu Pengcheng, Hu Guanglu, Gong Wei, et al. Soil physical properties and water retention characteristics of the sand-fixing plant root zone in the desert-oasis transition area of Gansu corridor[J]. Chinese Journal of Soil Science, 2021, 52(4): 811-820. ] | |
[7] | 冯伟. 毛乌素沙地东北缘土壤水分动态及深层渗漏特征[D]. 北京: 中国林业科学研究院, 2015. |
[Feng Wei. Soil Moisture Dynamics and Deep Soil Layer Infiltration Process in Northeastern Margin of Mu Us Sandland[D]. Beijing: Chinese Academic of Forestry, 2015. ] | |
[8] |
Li X R, Kong D S, Tan H J, et al. Changes in soil and vegetation following stabilization of dunes in the southeastern fringe of the Tengger Desert, China[J]. Plant and Soil, 2007, 300: 221-231.
doi: 10.1007/s11104-007-9407-1 |
[9] | 牛存洋, 阿拉木萨, 刘亚, 等. 科尔沁沙地固沙植物根系与土壤水分特征研究[J]. 干旱区资源与环境, 2015, 29(10): 106-111. |
[Niu Cunyang, Alamusa, Liu Ya, et al. the characteristics of sand- fixation plantations roots and soil moisture in horqin sandy land[J]. Journal of Arid land Resources and Environment, 2015, 29(10): 106-111. ] | |
[10] | Wang H B, Jia X P, Li Y S, et al. Selective deposition response to aeolian-fluvial sediment supply in the desert braided channel of the upper Yellow River, China[J]. Natural Hazards & Earth System Sciences, 2015, 3(2): 1269-1290. |
[11] | 李鹏, 高永, 赵青, 等. 乌兰布和沙漠东北缘人工梭梭林防风效能分析[J]. 水土保持通报, 2017, 37(5): 34-39. |
[Li Peng, Gao Yong, Zhao Qing, et al. Windbreak effectiveness of Haloxylon ammodendron on northeast edge of Ulan Buh Desert[J]. Bulletin of Soil and Water Conservation, 2017, 37(5): 34-39. ] | |
[12] | 赵纳祺, 李锦荣, 温文杰, 等. 乌兰布和沙漠黄河段不同治理措施固沙效果研究[J]. 内蒙古林业科技, 2018, 44(1): 7-12, 28. |
[Zhao Naqi, Li Jinrong, Wen Wenjie, et al. Sand-fixing effects of different management measures in the yellow river section of Wulanbuhe Desert[J]. Journal of Inner Mongolia Forestry Science & Technology, 2018, 44(1): 7-12, 28. ] | |
[13] | 高君亮, 郝玉光, 丁国栋, 等. 乌兰布和荒漠生态系统防风固沙功能价值初步评估[J]. 干旱区资源与环境, 2013, 27(12): 41-46. |
[Gao Junliang, Hao Yuguang, Ding Guodong, et al. Primary assessment on the wind-breaking and sand-fixing function of the vegetation and its value in Ulan Buh Desert ecosystem[J]. Journal of Arid Land Resources and Environment, 2013, 27(12): 41-46. ] | |
[14] | 辛颖. 阿什河上游天然次生林与人工林小流域水文生态效益对比研究[D]. 哈尔滨: 东北林业大学, 2011. |
[Xin Ying. Comparison of Hydrological Ecology between Secondary Forest and Artificial Forest Small Watershed in the Upper Reaches of Ashihe River[D]. Harbin: Northeast Forestry University, 2011. ] | |
[15] | 贾宝全, 慈龙骏, 高志海, 等. 绿洲荒漠化及其评价指标体系的初步探讨[J]. 干旱区研究, 2001, 18(2): 19-24. |
[Jia Baoquan, Ci Longjun, Gao Zhihai, et al. The desertification of oasis and its assessment indicators[J]. Arid Zone Research, 2001, 18(2): 19-24. ] | |
[16] |
Gao G L, Ding G D, Zhao Y Y, et al. Characterization of soil particle size distribution with a fractal model in the desertified regions of northern China[J]. Acta Geophysica, 2016, 64: 1-14.
doi: 10.1515/acgeo-2015-0050 |
[17] | 齐雁冰, 常庆瑞. 高寒地区人工植被恢复对风沙土区土壤效应影响[J]. 水土保持学报, 2005, 19(6): 40-43. |
[Qi Yanbing, Chang Qingrui. Effect of artificial vegetation restoration on sandificational soil characteristics in high frigid regions of China[J]. Journal of Soil and Water Conservation, 2005, 19(6): 40-43. ] | |
[18] | 肖洪浪, 张继贤, 李金贵. 腾格里沙漠东南缘降尘粒度特征和沉积速率[J]. 中国沙漠, 1997, 17(2): 127-132. |
[Xiao Honglang, Zhang Jixian, Li Jingui. Dustfall particle-size and sediment rate at the southern edge of Tengger Desert[J]. Journal of Desert Research, 1997, 17(2): 127-132. ] | |
[19] | 刘铮瑶, 董治宝, 赵杰, 等. 人工固沙措施对沙丘沉积物特征及土壤养分的影响[J]. 生态学报, 2020, 40(4): 1383-1391. |
[Liu Zhengyao, Dong Zhibao, Zhao Jie, et al. Effects of artificial sand fixation on sediment characteristics and soil nutrients[J]. Acta Ecologica Sinica, 2020, 40(4): 1383-1391. ] | |
[20] | 孙琰蕙, 张定海, 张志山. 腾格里沙漠不同类型沙丘土壤水分含量与地形-植被因子关系研究[J]. 干旱区地理, 2022, 45(5): 1570-1578. |
[Sun Yanhui, Zhang Dinghai, Zhang Zhishan. Relationship between soil moisture content and topography-vegetation factors in different types of dunes in the Tengger Desert[J]. Arid Land Geography, 2022, 45(5): 1570-1578. ] | |
[21] | 李新荣, 马凤云, 龙立群, 等. 沙坡头地区固沙植被土壤水分动态研究[J]. 中国沙漠, 2001, 21(3): 217-222. |
[Li Xinrong, Ma Fengyun, Long Liqun, et al. Soil water dynamics under sand-fixing vegetation in Shapotou area[J]. Journal of Desert Research, 2001, 21(3): 217-222. ] | |
[22] | 赵文智. 科尔沁沙地人工植被对土壤水分异质性的影响[J]. 土壤学报, 2002, 39(1): 107-113. |
[Zhao Wenzhi. Impact of plantation on spatial heterogeneity of soil moisture in Horqin Sandy Land[J]. Acta Pedologica Sinica, 2002, 39(1): 107-113. ] | |
[23] | 李海东, 沈渭寿, 林乃峰, 等. 雅鲁藏布江中游河岸交错带沙地土壤水分的空间异质性[J]. 农业工程学报, 2012, 28(6): 150-155. |
[Li Haidong, Shen Weishou, Lin Naifeng, et al. Spatial variability of soil moisture on aeolian sandy land in riparian ecotone of middle reaches of Yarlung Zangbo River Valley[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(6): 150-155. ] | |
[24] |
Wang S K, Zao X Y, Qu H, et al. Variation in soil water content to rainfall under Caragana microphylla shrub in Horqin Sandy Land[J]. Journal of Arid Land, 2010, 2(3): 174-179.
doi: 10.3724/SP.J.1227.2010.00174 |
[25] |
Cheng Y B, Yang W B, Zhan H B, et al. On change of soil moisture distribution with vegetation reconstruction in Mu Us Sandy Land of China, with newly designed lysimeter[J]. Frontiers in Plant Science, 2021, 12: 609529.
doi: 10.3389/fpls.2021.609529 |
[26] | Song S S, Liu B, Wang J J, et al. Response of soil moisture to rainfall in Pine Sylvestris in the Mu Us Sandy Land[J]. Environment, Resource and Ecology Journal, 2022, 6(2): 119-127. |
[27] |
卢立娜, 赵雨兴, 胡莉芳, 等. 沙棘(Hippophae rhamnoides)种植对鄂尔多斯砒砂岩地区土壤容重、孔隙度与贮水能力的影响[J]. 中国沙漠, 2015, 35(5): 1171-1176.
doi: 10.7522/j.issn.1000-694X.2014.00099 |
[Lu Lina, Zhao Yuxing, Hu Lifang, et al. Effects of Hippophae rhamnoides plantation on soil bulk density, porosity and moisture capacity in the arsenic sandstone area of Inner Mongolia[J]. Journal of Desert Research, 2015, 35(5): 1171-1176. ]
doi: 10.7522/j.issn.1000-694X.2014.00099 |
|
[28] | 张素, 熊东红, 校亮, 等. 干湿交替对土壤性质影响的研究[J]. 土壤通报, 2017, 48(3): 762-768. |
[Zhang Su, Xiong Donghong, Xiao Liang, et al. Influence of dry-wet cycling on soil properties[J]. Chinese Journal of Soil Science, 2017, 48(3): 762-768. ] | |
[29] | 田超, 杨新兵, 李军, 等. 冀北山地不同海拔蒙古栎林枯落物和土壤水文效应[J]. 水土保持学报, 2011, 25(4): 221-226. |
[Tian Chao, Yang Xinbing, Li Jun, et al. Hydrological effects of forest litters and soil of Quercus mongolica in the different altitudes of north mountain of Hebei Province[J]. Journal of Soil and Water Conservation, 2011, 25(4): 221-226. ] | |
[30] |
Wang G H, Yu K L, Gou Q Q. Effects of sand disturbance on establishment of three desert shrub species in the margin of oasis northwestern China[J]. Ecological Research, 2019, 34(1): 127-135.
doi: 10.1111/ere.2019.34.issue-1 |
[31] | 张晓梅, 邸利, 王彦辉, 等. 黄土高原典型林分土壤水文物理性质及持水性能[J]. 甘肃农业大学学报, 2019, 54(3): 117-124, 133. |
[Zhang Xiaomei, Di Li, Wang Yanhui, et al. Soil hydro-physical properties and water holding capacity of typical forest stands on the Loess Plateau[J]. Journal of Gansu Agricultural University, 2019, 54(3): 117-124, 133. ] | |
[32] | 唐永发, 张宝军, 熊东红, 等. 雅江河谷防沙治沙生态工程实施年限对沙地持水性能的影响[J]. 水土保持学报, 2021, 35(4): 55-63. |
[Tang Yongfa, Zhang Baojun, Xiong Donghong, et al. Effects of different implementation period of the vegetation ecological projects on the water holding capacity of aeolian sandy land in the Yarlung Zangbo River Valley[J]. Journal of Soil and Water Conservation, 2021, 35(4): 55-63. ] | |
[33] | 李永涛, 魏海霞, 王振猛, 等. 黄河三角洲不同林分类型对土壤水分物理特性的影响[J]. 中南林业科技大学学报, 2020, 40(8): 106-112. |
[Li Yongtao, Wei Haixia, Wang Zhenmeng, et al. Effects of different forest stands on soil water physical properties of saline-alkali land in the Yellow River Delta[J]. Journal of Central South University of Forestry & Technology, 2020, 40(8): 106-112. ] | |
[34] | 蔡楚雄, 贾玉华, 郭成久. 科尔沁沙地南缘不同植被对土壤物理性质改良作用研究[J]. 水土保持研究, 2017, 24(2): 49-54. |
[Cai Chuxiong, Jia Yuhua, Guo Chengjiu. Research for effect of different types of vegetation on physical properties improvement of sandy soil in the sandy land in south Horqin[J]. Research of Soil and Water Conservation, 2017, 24(2): 49-54. ] |
[1] | LIAO Guiyun,WU Xiuqin,TAN Jin,LI Dan,FENG Mengxin. Application of the Wind Erosion Prediction System in the Ulan Buh Desert Cyperus esculentus planting area [J]. Arid Zone Research, 2022, 39(5): 1504-1513. |
[2] | ZHAO Chenguang,LI Huiying,YU Tengfei,CHEN Weiyu,XIE Zongcai,ZHANG Binwu,ZHANG Jun. Effects of artificial vegetation construction on soil physical properties in the northeastern edge of Tengger Desert [J]. Arid Zone Research, 2022, 39(4): 1112-1121. |
[3] | Ren Yu, GAO Yong, YU Yi, ZHANG Jing-bo, JIANG Jing-yu, XING Tie-peng. Analysis on Relationship between Lake Change and Climate Change in the Ulan Buh Desert [J]. , 2011, 28(1): 168-174. |
|