Arid Zone Research ›› 2022, Vol. 39 ›› Issue (4): 1155-1165.doi: 10.13866/j.azr.2022.04.16
• Plant Ecology • Previous Articles Next Articles
JIAO Ayong1(),CHEN Fulong1,YAN Junjie2(),LING Hongbo3,4,SHEN Ruihua1
Received:
2021-11-20
Revised:
2022-02-28
Online:
2022-07-15
Published:
2022-09-26
Contact:
Junjie YAN
E-mail:943573243@qq.com;yan3550@sina.com
JIAO Ayong,CHEN Fulong,YAN Junjie,LING Hongbo,SHEN Ruihua. Spatio-temporal heterogeneity evaluation of grassland TI-NDVI and NDVImax in northern Xinjiang[J].Arid Zone Research, 2022, 39(4): 1155-1165.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Jiang L L, Jiapaer G, Bao A M, et al. Vegetation dynamics and responses to climate change and human activities in Central Asia[J]. Science of the Total Environment, 2017, 599: 967-980. |
[2] |
陈京华, 贾文雄, 赵珍, 等. 1982—2006年祁连山植被覆盖的时空变化特征研究[J]. 地球科学进展, 2015, 30(7): 834-845.
doi: 10.11867/j.issn.1001-8166.2015.07.0834 |
[Chen Jinghua, Jia Wenxiong, Zhao Zhen, et al. Research on temporal and spatial variation characteristics of vegetation cover of Qilian Mountains from 1982 to 2006[J]. Advances in Earth Science, 2015, 30(7): 834-845.]
doi: 10.11867/j.issn.1001-8166.2015.07.0834 |
|
[3] |
Alexander M R H, Shane W C, Michael L R. The use of time-integrated NOAA NDVI data and rainfall to assess landscape degradation in the arid shrubland of western Australia[J]. Remote Sensing of Environment, 2003, 85: 145-158.
doi: 10.1016/S0034-4257(02)00199-2 |
[4] |
张远东, 张笑鹤, 刘世荣. 西南地区不同植被类型归一化植被指数与气候因子的相关分析[J]. 应用生态学报, 2011, 22(2): 323-330.
pmid: 21608242 |
[Zhang Yuandong, Zhang Xiaohe, Liu Shirong. Correlation analysis on normalized difference vegetation index (NDVI) of different vegetations and climatic factors in Southwest China[J]. Chinese Journal of Applied Ecology, 2011, 22(2): 323-330.]
pmid: 21608242 |
|
[5] | 闫俊杰, 陈晨, 赵阳, 等. 基于TINDVI的伊犁河谷草地覆盖变化[J]. 水土保持研究, 2021, 28(3): 331-339. |
[Yan Junjie, Chen Chen, Zhao Yang, et al. Dynamics of grassland coverage in Ili River valley based on TINDVI[J]. Research of Soil and Water Conservation, 2021, 28(3): 331-339.] | |
[6] | 郭继凯, 吴秀芹, 董贵华, 等. 基于MODIS/NDVI的塔里木河流域植被覆盖变化驱动因素相对作用分析[J]. 干旱区研究, 2017, 34(3): 621-629. |
[Guo Jikai, Wu Xiuqin, Dong Guihua, et al. Vegetation coverage change and relative effects of driving factors based on MODIS /NDVI in the Tarim River Basin[J]. Arid Zone Research, 2017, 34(3): 621-629.] | |
[7] |
Reeves M C, Zhao M S, Running S W. Applying improved estimates of MODIS productivity to characterize grassland vegetation dynamics[J]. Rangeland Ecology & Management, 2006, 59: 1-10.
doi: 10.2111/1551-5028(2006)59[001:AIEOMP]2.0.CO;2 |
[8] |
Gitelson A A. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation[J]. Journal of Plant Physiology, 2004, 161: 165-173.
pmid: 15022830 |
[9] | 鲁泽恩, 田玉刚, 柳庆威, 等. 基于Sentinel-1和DEM数据的南岭高植被覆盖区地形线性特征提取方法[J]. 地球科学, 2021, 46(4): 1349-1358. |
[Lu Ze’en, Tian Yugang, Liu Qingwei, et al. Topographical linear feature extraction method based on Sentinel-1 and DEM in areas with high vegetation coverage of Nanling[J]. Earth Science, 2021, 46(4): 1349-1358.] | |
[10] | 刘佳丽, 范建容, 张茜彧, 等. 高寒草地生长季/非生长季植被盖度遥感反演[J]. 草业学报, 2021, 30(9): 15-26. |
[Liu Jiali, Fan Jianrong, Zhang Qianyu, et al. Remote sensing estimation of vegetation cover in alpine grassland in the growing and non-growing seasons[J]. Acta Prataculturae Sinica, 2021, 30(9): 15-26.] | |
[11] |
Holben B N. Characteristics of maximum-value composite images from temporal AVHRR data[J]. International Journal of Remote Sensing, 1986, 7: 1417-1434.
doi: 10.1080/01431168608948945 |
[12] |
Gutman G, Ignatov A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models[J]. International Journal of Remote Sensing, 1998, 19: 1533-1543.
doi: 10.1080/014311698215333 |
[13] |
Hill M J, Donald G E. Estimating spatio-temporal patterns of agricultural productivity in fragmented landscapes using AVHRR NDVI time series[J]. Remote Sensing of Environment, 2003, 84: 367-384.
doi: 10.1016/S0034-4257(02)00128-1 |
[14] | 杨鑫, 曹文侠, 鱼小军, 等. 基于近20年MODIS NDVI日数据的青海省草地资源动态监测及其对环境因子的响应[J]. 草业学报, 2021, 30(9): 1-14. |
[Yang Xin, Cao Wenxia, Yu Xiaojun, et al. Dynamic monitoring of grassland resources and their responses to environmental factors in Qinghai Province based on analyses of daily MODIS NDVI data from the past 20 years[J]. Acta Prataculturae Sinica, 2021, 30(9): 1-14.] | |
[15] | Cuomo V, Lanfredi M, Lasaponara R. Detection of interannual variation of vegetation in middle and southern Italy during 1985-1999 with 1 km NOAA AVHRR NDVI data[J]. Journal of Geophysical Research: Earth Surface, 2001, 106: 17863-17876. |
[16] |
Ferrara R, Costanza F, Nicola M, et al. Comparison of different ground-based NDVI measurement methodologies to evaluate crop biophysical properties[J]. Italian Journal of Agronomy, 2010, 5: 145-154.
doi: 10.4081/ija.2010.145 |
[17] | 刘珞丹, 李晶, 柳彩霞, 等. 2000—2015年长江经济带植被覆盖时空变化特征及影响因素分析[J]. 水土保持研究, 2021, 28(6): 330-336. |
[Liu Luodan, Li Jing, Liu Caixia, et al. Analysis on the characteristics of temporal and spatial changes and influencing factors of vegetation coverage in the Yangtze River Economic Belt from 2000 to 2015[J]. Research of Soil and Water Conservation, 2021, 28(6): 330-336.] | |
[18] |
Goward S N, Tucker C J, Dye D G. North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer[J]. Vegetatio, 1985, 64: 3-14.
doi: 10.1007/BF00033449 |
[19] |
Hill M J, Donald G E. Estimating spatio-temporal patterns of agricultural productivity in fragmented landscapes using AVHRR NDVI time series[J]. Remote Sensing of Environment, 2003, 84: 367-384.
doi: 10.1016/S0034-4257(02)00128-1 |
[20] |
Reed B C, Brown J F, Vanderzee D, et al. Measuring phenological variability from satellite imagery[J]. Journal of Vegetation Science, 1994b, 5: 703-714.
doi: 10.2307/3235884 |
[21] | Townshend J R G, Goff T E, Tucker C J. Multitemporal dimensionality of images of normalized difference vegetation index at continental scales[J]. Remote Sensing, 1985, 23: 888-895. |
[22] |
Tucker C J, Holben B N, Elgin J H, et al. Remote sensing of total dry-matter accumulation in winter wheat[J]. Remote Sensing Environment, 1981, 11: 171-189.
doi: 10.1016/0034-4257(81)90018-3 |
[23] |
Calera A, González-Piqueras J, Melia J. Monitoring barley and corn growth from remote sensing data at field scale[J]. International Journal of Remote Sensing, 2004, 25: 97-109.
doi: 10.1080/0143116031000115319 |
[24] |
Diallo O, Diouf A, Hanan N P, et al. AVHRR monitoring of savanna primary production in Senegal, West Africa: 1987-1988[J]. International Journal of Remote Sensing, 1991, 12: 1259-1279.
doi: 10.1080/01431169108929725 |
[25] |
Forzieri G, Feyen L, Cescatti A, et al. Spatial and temporal variations in ecosystem response to monsoon precipitation variability in southwestern North America[J]. JGR Biogeosciences, 2014, 119: 1999-2017.
doi: 10.1002/2014JG002710 |
[26] |
Goward S N, Dye D G. Evaluating North American net primary productivity with satellite observations[J]. Advances in Space Research, 1987, 7: 165-174.
doi: 10.1016/0273-1177(87)90308-5 |
[27] |
Rasmussen M S. Developing simple, operational, consistent NDVI-vegetation models by applying environmental and climatic information[J]. International Journal of Remote Sensing, 1998, 19: 97-117.
doi: 10.1080/014311698216459 |
[28] |
Running S W, Nemani R R. Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates[J]. Remote Sensing of Environment, 1988, 24: 347-367.
doi: 10.1016/0034-4257(88)90034-X |
[29] | Dutrieux L P, Bartholomeus H, Herold M, et al. Relationships between declining summer sea ice, increasing temperatures and changing vegetation in the Siberian Arctic tundra from MODIS time series (2000-11)[J]. Environmental Research Letters, 2012, 7: 12. |
[30] |
Yang L, Wylie B K, Tieszen L L, et al. An analysis of relationships among climate forcing and time-integrated NDVI of grasslands over the US northern and central Great Plains[J]. Remote Sensing of Environment, 1998, 65: 25-37.
doi: 10.1016/S0034-4257(98)00012-1 |
[31] |
Jin J, Wang Q. Assessing ecological vulnerability in western China based on time-integrated NDVI data[J]. Journal of Arid Land, 2016, 8: 533-545.
doi: 10.1007/s40333-016-0048-1 |
[32] |
Reed B C, Brown J F, Vanderzee D, et al. Measuring phenological variability from satellite imagery[J]. Journal of Vegetation Science, 1994, 5: 703-714.
doi: 10.2307/3235884 |
[33] |
Verrelst J, Camps-Valls G, Munoz-Mari J, et al. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties: A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 108: 273-290.
doi: 10.1016/j.isprsjprs.2015.05.005 |
[34] |
Le Maire G, Marsden C, Nouvellon Y, et al. MODIS NDVI time-series allow the monitoring of Eucalyptusplantation biomass[J]. Remote Sensing of Environment, 2011, 115: 2613-2625.
doi: 10.1016/j.rse.2011.05.017 |
[35] | 张婷, 薛东剑, 段金亮, 等. 2000—2019嘉陵江流域植被覆盖时空变化特征及气候响应分析[J]. 长江流域资源与环境, 2021, 30(5): 1110-1120. |
[Zhang Ting, Xue Dongjian, Duan Jinliang, et al. Spatio-temporal variation characteristics and climate response analysis of vegetation coverage in Jialing River Basin from 2000 to 2019[J]. Resources and Environment in the Yangtze Basin, 2021, 30(5): 1110-1120.] | |
[36] |
陈婷, 夏军, 邹磊, 等. 白洋淀流域NDVI时空演变及其对气候变化的响应[J]. 资源科学, 2021, 43(6): 1248-1259.
doi: 10.18402/resci.2021.06.15 |
[Chen Ting, Xia Jun, Zou Lei, et al. Spatiotemporal variations of NDVI of different vegetation types in the Baiyangdian Basin under the background of climate change[J]. Resources Science, 2021, 43(6): 1248-1259.]
doi: 10.18402/resci.2021.06.15 |
|
[37] | Brown C E. Coefficient of Variation, Applied Multivariate Statistics in Geohydrology and Related Sciences[M]. Springer, Berlin: Heidelberg, 1998. |
[38] | 位宏, 李晓蕾, 徐丽萍, 等. 玛纳斯河流域NDVI时空变化及对气象因子的响应[J]. 水土保持研究, 2019, 26(1): 215-220. |
[Wei Hong, Li Xiaolei, Xu Liping, et al. Spatial and temporal distribution of NDVI and its response to climate factors in the Manasi River Basin[J]. Research of Soil and Water Conversation, 2019, 26(1): 215-220.] | |
[39] | 陆妍, 喻文兵, 郭明, 等. 黑龙江省漠河地区土地覆被与地表温度时空变化特征研究[J]. 冰川冻土, 2017, 39(5): 1137-1149. |
[Lu Yan, Yu Wenbin, Guo Ming, et al. Spatiotemporal variation characteristics of land cover and land surface temperature in Mohe County, Helongjiang Province[J]. Journal of Glaciology and Geocryology, 2017, 39(5): 1137-1149.] | |
[40] |
Adam J C, Hamlet A F, Lettenmaier D P. Implications of global climate change for snowmelt hydrology in the twenty-first century[J]. Hydrological Processes, 2009, 23(7): 962-972.
doi: 10.1002/hyp.7201 |
[41] |
Gu Y, Wylie B K. Detecting ecosystem performance anomalies for land management in the upper Colorado River Basin using satellite observations, climate data, and ecosystem models[J]. Remote Sensing, 2010, 2: 1880-1891.
doi: 10.3390/rs2081880 |
[42] |
Jiapaer G, Chen X, Bao A M. A comparison of methods for estimating fractional vegetation cover in arid regions[J]. Agricultural and Forest Meteorology, 2011, 151: 1698-1710.
doi: 10.1016/j.agrformet.2011.07.004 |
[1] | LI Xiaofeng, HUI Tingting, LI Yaoming, MAO Jiefei, WANG Guangyu, FAN Lianlian. Effects of different grazing management strategies on plant diversity in the mountain grassland of Xinjiang, China [J]. Arid Zone Research, 2024, 41(1): 124-134. |
[2] | ZHOU Jing,SUN Yongfeng,DING Jieping,BAI Haojiang,MA Xiang,WANG Xuyang,Luo Yongqing. Changes in vegetation biomass and its relationship with soil carbon during restoration processes in degraded sandy grasslands [J]. Arid Zone Research, 2023, 40(9): 1457-1464. |
[3] | CHEN Chunbo,LI Junli,ZHAO Yan,XIA Jiang,TIAN Weitao,LI Chaofeng. Spatiotemporal dynamics of grassland vegetation and its responses to climate change in Changji Hui Autonomous Prefecture, Xinjiang [J]. Arid Zone Research, 2023, 40(9): 1484-1497. |
[4] | WEN Miaoxia, HE Xuegao, LIU Huan, ZHANG Jing, LUO Chen, JIA Fengming, WANG Yigui, HU Yunyun. Analysis of the spatiotemporal variation characteristics and driving factors of grassland vegetation cover in Ningxia based on geographical detectors [J]. Arid Zone Research, 2023, 40(8): 1322-1332. |
[5] | TA Fuyuan, ZHANG Hongyang, GOU Wenshan, MA Weixin, HU Guixin. Survey of species diversity of darkling beetles in the Minqin temperate desert steppe [J]. Arid Zone Research, 2023, 40(5): 840-848. |
[6] | ZHAO Jian, DENG Chengjun, LI Wenli, ZHAO Jin, GONG Yanming, LI Kaihui. Evaluation of the degree of degradation of Xinjiang Tianshan Bayinbuluk grassland in 35 years [J]. Arid Zone Research, 2023, 40(4): 636-646. |
[7] | ZHANG Yusi,BAO Yuhai,HE Zhonghua. Detecting the change and trend of remote sensing ecological quality in Inner Mongolia from 1990-2021: A case study of Chenbarhu Banner of Hulunbuir City [J]. Arid Zone Research, 2023, 40(2): 326-336. |
[8] | WU Rina, LIU Buyun, BAO Yuhai. Time lag and cumulative effect of drought on gross primary productivity in the grasslands of northern China [J]. Arid Zone Research, 2023, 40(10): 1644-1660. |
[9] | LIU Huanhuan, CHEN Yin, LIU Yue, GANG Chengcheng. Simulation of spatial pattern and future trends of grassland net primary productivity in the Loess Plateau based on random forest model [J]. Arid Zone Research, 2023, 40(1): 123-131. |
[10] | YU Guangling,LI Kaihui,ZHOU Jianqin,LI Keyi,CONG Mengfei,HU Yang,WANG Xuyang,JIA Hongtao. Effects of long-term enclosure on soil aggregate stability and erodibility in Bayinbuluk alpine grassland [J]. Arid Zone Research, 2022, 39(6): 1842-1851. |
[11] | AN Bin,XIAO Weiwei,ZHU Ni,LIU Yufeng. Temporal and spatial variations of precipitation concentration degree and precipitation concentration period on the Loess Plateau from 1960 to 2019 [J]. Arid Zone Research, 2022, 39(5): 1333-1344. |
[12] | SANG Jing,WANG Yingbin,QIAN Lianhong,WANG Haimei,WANG Qiyu. Analysis of the relationship between the dynamic snowmelt process of meadow grassland and meteorological factors: Ergun City [J]. Arid Zone Research, 2022, 39(5): 1428-1436. |
[13] | YUAN Limin,YANG Zhiguo,XUE Bo,GAO Haiyan,HAN Zhaorigetu. Heterogeneity of soil moisture of blowouts in HulunBuir grassland [J]. Arid Zone Research, 2022, 39(5): 1598-1606. |
[14] | ZHAI Hui,LI Guorong,LI Jinfang,ZHU Haili,ZHAO Jianyun,LIU Yabin,CHEN Wenting,HU Xiasong. Soil wind erosion rule of two types of rodent mounds in a degraded grassland area of the Yellow River source zone [J]. Arid Zone Research, 2022, 39(4): 1212-1221. |
[15] | ZHANG Yunxin,HAO Haichao,FAN Lianlian,LI Yaoming,ZHANG Renping,LI Kaihui. Study on spatio-temporal dynamics and driving factors of NPP in Central Asian grassland [J]. Arid Zone Research, 2022, 39(3): 698-707. |
|