Arid Zone Research ›› 2024, Vol. 41 ›› Issue (7): 1177-1184.doi: 10.13866/j.azr.2024.07.09
• Plant Ecology • Previous Articles Next Articles
ZHANG Bin1,2(), LI Congjuan1(), Yi Guangping3, LIU Ran4
Received:
2023-12-09
Revised:
2024-04-18
Online:
2024-07-15
Published:
2024-08-01
ZHANG Bin, LI Congjuan, Yi Guangping, LIU Ran. Physiological, biochemical and morphological responses of Haloxylon ammodendron and Calligonum caput-medusae to drought stress[J].Arid Zone Research, 2024, 41(7): 1177-1184.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Tab. 1
Functional traits of assimilated branches under different drought treatments"
物种 | 干旱处理 | 土壤含水量 (SWC)/% | 同化枝直径 (LD)/mm | 同化枝长度 (LL)/cm | 同化枝相对含水量 (RWC)/% | 同化枝干物质量 (LDMC)/% |
---|---|---|---|---|---|---|
梭梭 H. ammodendron | D | 0.04(0.01)* | 0.72(0.03)* | 1.57(0.12)** | 74(6.40) | 35(4.00) |
CK | 0.71(0.41) | 0.81(0.03) | 2.84(0.15) | 82(1.30) | 54(1.00) | |
头状沙拐枣 C. caput-medusae | D | 0.08(0.02)* | 1.01(0.03)** | 5.11(0.48)** | 69(2.00)* | 39(1.60)* |
CK | 0.63(0.12) | 1.39(0.03) | 10.01(0.37) | 78(0.60) | 32(2.00) |
Tab. 2
Parameters of A/Ca curves under different drought treatments"
物种 | 干旱处理 | 光合能力(Pnmax) /(μmol CO2·m-2·s-1) | 初始羧化效率(CE) /(mol·m-2·s-1) | CO2补偿点(CCP) /(μmol·m-1) | CO2饱和点(CSP) /(μmol·m-1) | 光呼吸速率(Rp) /(μmol CO2·m-2·s-1) |
---|---|---|---|---|---|---|
H. ammodendron | D | 14.53(2.85) | 0.11(0.05) | 59.33(14.79) | 566.33(106.67) | 4.89(1.39) |
CK | 25.83(7.78) | 0.20(0.08) | 31.18(23.99) | 554.71(113.33) | 2.45(1.16) | |
C. caput-medusae | D | 23.05(7.23) | 0.45(0.19) | 44.43(25.45) | 1038.61(435.63) | 13.39(9.00) |
CK | 18.17(4.11) | 0.17(0.01) | 34.85(8.00) | 1236.23(427.50) | 4.66(0.77) |
Tab. 3
Photosynthetic chlorophyll traits of assimilated branches under different drought treatments"
物种 | 干旱处理 | 光合酶 (Rubisco)/(nmol·g-1·min-1) | 叶绿素a (Chla)/(mg·g-1) | 叶绿素b (Chlb)/(mg·g-1) | 总叶绿素 (Chl)/(mg·g-1) |
---|---|---|---|---|---|
H. ammodendron | D | 5.40(0.86) | 0.10(0.03) | 0.02(0.00) | 0.11(0.03) |
CK | 7.11(0.76) | 0.15(0.02) | 0.01(0.00) | 0.17(0.03) | |
C. caput-medusae | D | 269.00(42.43) | 0.24(0.02) | 0.05(0.01) | 0.29(0.21) |
CK | 166.28(25.87) | 0.26(0.03) | 0.06(0.01) | 0.32(0.04) |
[1] |
Li Y, Wang Y H, Song J M. Trends in extreme climatic indices across the temperate steppes of China from 1961 to 2013[J]. Journal of Plant Ecology, 2019, 12(3): 485-497.
doi: 10.1093/jpe/rty041 |
[2] | Zhu Z H, Sami A, Chen Z P, et al. Effects of microscopic testa color and morphologyon the water uptake ability and drought tolerance of germination-stage rapeseed (Brassica napus L. )[J]. Bioengineered, 2021, 12(2): 9341-9355. |
[3] | Yang X, Lu M, Wang Y, et al. Response mechanism of plants to drought stress[J]. Horticulturae, 2021, 7(3): 50. |
[4] | Chen Y H, Wei G W, Cui Y, et al. Nutrient inputs alleviate negative effects of early and subsequent flooding on growth of Polygonum hydropiper with the aid of adventitious roots[J]. Frontiers in Plant Science, 2022, 13: 919409. |
[5] | 魏圆慧, 梁文召, 韩路, 等. 胡杨叶功能性状特征及其对地下水埋深的响应[J]. 生态学报, 2021, 41(13): 5368-5376. |
[Wei Yuanhui, Liang Wenzhao, Han Lu, et al. Leaf functional traits of Populus euphratica and its response to groundwater depths in Tarim extremely arid area[J]. Acta Ecologica Sinica, 2021, 41(13): 5368-5376.] | |
[6] | 徐梦琦, 高艳菊, 张志浩, 等. 干旱胁迫对疏叶骆驼刺幼苗生长和生理的影响[J]. 干旱区研究, 2023, 40(2): 257-267. |
[Xu Mengqi, Gao Yanju, Zhang Zhihao, et al. Effects of drought stress on growth and physiology of Alhagi sparsifolia seedlings[J]. Arid Zone Research, 2023, 40(2): 257-267.] | |
[7] | Maia Junior S d O, de Andrade J R, dos Santos C M, et al. Leaf thickness and gas exchange are indicators of drought stress tolerance of sugarcane[J]. Emirates Journal of Food and Agriculture, 2019, 31(1): 29-38. |
[8] |
周洁, 杨晓东, 王雅芸, 等. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076.
doi: 10.17521/cjpe.2021.0338 |
[Zhou Jie, Yang Xiaodong, Wang Yayun, et al. Difference in adaptation strategy between Haloxylon ammodendron and Alhagi sparsifolia to drought[J]. Chinese Journal of Plant Ecology, 2022, 46(9): 1064-1076.] | |
[9] | Flexas J, Bota J, Loreto F, et al. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3plants[J]. Plant Biology, 2008, 6(3): 269-279. |
[10] | Guo C, Liu L, Sun H, et al. Predicting Fv/Fm and evaluating cotton drought tolerance using hyperspectral and 1D-CNN[J]. Frontiers in Plant Science, 2022, 13: 1007150. |
[11] | 何远政, 黄文达, 王怀海, 等. 沙质草地3种优势植物叶片光合生理对增温和降水减少的响应[J]. 西北植物学报, 2022, 42(4): 684-693. |
[He Yuanzheng, Huang Wenda, Wang Huaihai, et al. Leaf photosynthetic responses to warming and precipitation reduction of three dominant species in horqin sandy land[J]. Acta Botanica Boreali-Occidentalia Sinica, 2022, 42(4): 684-693.] | |
[12] | Xu H, Li Y. Water-use strategy of three central Asian desert shrubs and their responses to rain pulse events[J]. Plant and Soil, 2006, 285(1-2): 5-17. |
[13] | Li C, Lei J, Zhao Y, et al. Effect of saline water irrigation on soil development and plant growth in the Taklimakan desert highway shelterbelt[J]. Soil & Tillage Research, 2015, 146: 99-107. |
[14] |
李民青, 周乐, 王喜勇, 等. 7种荒漠木本植物枝干与叶片光合特征及其影响因素[J]. 应用生态学报, 2023, 34(10): 2637-2643.
doi: 10.13287/j.1001-9332.202310.007 |
[Li Minqing, Zhou Le, Wang Xiyong, et al. Stem and leaf photosynthesis of seven desert woody species and its influencing factors[J]. Acta Botanica Boreali-Occidentalia Sinica, 2023, 34(10): 2637-2643.] | |
[15] | Li C, Han H, Ablimiti M, et al. Morphological and physiological responses of desert plants to drought stress in a man-made landscape of the Taklimakan desert shelterbelt[J]. Ecological Indicators, 2022, 140: 109037. |
[16] | Lü X P, Gao H J, Zhang L, et al. Dynamic responses of Haloxylon ammodendron to various degrees of simulated drought stress[J]. 2019, 139: 121-131. |
[17] | Hu D, Lv G, Qie Y, et al. Response of morphological characters and photosynthetic characteristics of Haloxylon ammodendron to water and salt stress[J]. 2021, 13(1): 388. |
[18] | Reigosa M J, Li C, Shi X, et al. Moderate irrigation intervals facilitate establishment of two desert shrubs in the Taklimakan desert highway shelterbelt in China[J]. Plos One, 2017, 12(7): e0180875. |
[19] | 闫海龙, 张希明, 许浩, 等. 塔里木沙漠公路防护林3种植物光合特性对干旱胁迫的响应[J]. 生态学报, 2010, 30(10): 2519-2528. |
[Yan Hailong, Zhang Ximing, Xu Hao, et al. Photosynthetic characteristics responses of three plants to drought stress in Tarim desert highway shelterbelt[J]. Acta Ecologica Sinica, 2010, 30(10): 2519-2528.] | |
[20] | Liu S, Xu G, Mi X, et al. Effects of groundwater depth and seasonal drought on the physiology and growth of Haloxylon ammodendron at the southern edge of Gurbantonggut Desert[J]. Acta Ecologica Sinica, 2022, 42(21): 8881-8891. |
[21] | 丁新原, 周智彬, 徐新文, 等. 咸水滴灌下塔克拉玛干沙漠腹地人工绿地土壤水分三维时空动态[J]. 应用生态学报, 2015, 26(9): 2600-2608. |
[Ding Xinyuan, Zhou Zhibin, Xu Xinwen, et al. Three-dimension temporal and spatial dynamics of soil water for the artificial vegetation in the center of Taklimakan Desert under saline water drip-irrigation[J]. The Journal of Applied Ecology, 2015, 26(9): 2600-2608.] | |
[22] | Atkin O, Millar A, Gardeström P, et al. Photosynthesis, carbohydrate metabolism and respiration in leaves of higher plants[J]. Photosynthesis: Physiology and metabolism, 2000, (9): 153-175. |
[23] | Atkin O K, Evans J R, Siebke K. Relationship between the inhibition of leaf respiration by light and enhancement of leaf dark respiration following light treatment[J]. Functional Plant Biology, 1998, 25(4): 437-443. |
[24] | Barbour M M, McDowell N G, Tcherkez G, et al. A new measurement technique reveals rapid post-illumination changes in the carbon isotope composition of leaf-respired CO2[J]. Plant, Cell & Environment, 2007, 30(4): 469-482. |
[25] | 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006: 77-74. |
[Gao Junfeng. Laboratory Instruction of Plant Physiology[M]. Beijing: Higher Education Press, 2006: 74-77.] | |
[26] | 叶子飘, 于强. 光合作用对胞间和大气CO2响应曲线的比较[J]. 生态学杂志, 2009, 28(11): 2233-2238. |
[Ye Zipiao, Yu Qiang. A comparison of response curves of winter wheat photosynthesis to flag leaf intercellular and air CO2 concentrations[J]. Chinese Journal of Ecology, 2009, 28(11): 2233-2238.] | |
[27] | Blanke M M, Ebert G. Phosphoenolpyruvate carboxylase and carboneconomy of apple seedlings[J]. Journal of Experimental Botany, 1992, 43(7): 965-968. |
[28] |
Ackerly D D, Reich P B. Convergence and correlations among leaf size and function in seed plants: A comparative test using independent contrasts[J]. American Journal of Botany, 1999, 86(9): 1272-1281.
pmid: 10487815 |
[29] | 李炎, 王丹. 不同土壤水分测定方法的比较研究[J]. 安徽农业科学, 2010, 38(17): 9110-9112. |
[Li Yan, Wang Dan. Comparative study of different soil moisture determination methods[J]. Anhui Agricultural Science, 2010, 38(17): 9110-9112.] | |
[30] | Tian H, Zhou Q, Liu W, et al. Responses of photosynthetic characteristics of oat flag leaf and spike to drought stress[J]. Frontiers in Plant Science, 2022, 13: 917528. |
[31] | Popova A V, Mihailova G, Geneva M, et al. Different responses to water deficit of two common winter wheat varieties: Physiological and biochemical characteristics[J]. Plants, 2023, 12(12): 2239. |
[32] | Wang F, Guo S, Zhang W, et al. Anatomic structure characteristics of assimilating shoots of Haloxylon ammodendronin different ages and their response to soil conditions[J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(3): 473-479. |
[33] | 陈春晓, 谢秀华, 王宇鹏, 等. 盐分和干旱对沙枣幼苗生理特性的影响[J]. 生态学报, 2019, 39(12): 4540-4550. |
[Chen Chunxiao, Xie Xiuhua, Wang Yupeng, et al. Effects of salt and drought on the physiological characteristics of Elaeagnus angustifolia L. seedlings[J]. Acta Ecologica Sinica, 2019, 39(12): 4540-4550.] | |
[34] | 闫海龙, 张希明, 许浩, 等. 塔里木沙漠公路防护林植物沙拐枣气体交换特性对干旱胁迫的响应[J]. 中国沙漠, 2007, 27(3): 460-465. |
[Yan Hailong, Zhang Ximing, Xu Hao, et al. Responses of Calligonum arborescens photosynthesis to water stress in Tarim highway shelterbelt[J]. Journal of Desert Research, 2007, 27(3): 460-465.] | |
[35] | Bhattacharya A. Soil Water Deficit and Physiological Issues in Plants[M]. Singapore: Springer, 2021: 393-488. |
[36] | Ethier G, Livingston N, Harrison D, et al. Low stomatal and internal conductance to CO2 versus Rubisco deactivation as determinants of the photosynthetic decline of ageing evergreen leaves[J]. 2006, 29(12): 2168-2184. |
[37] |
Rowland L, Lobo-do-Vale R L, Christoffersen B O, et al. After more than a decade of soil moisture deficit, tropical rainforest trees maintain photosynthetic capacity, despite increased leaf respiration[J]. Global Change Biology, 2015, 21(12): 4662-4672.
doi: 10.1111/gcb.13035 pmid: 26179437 |
[38] | Grassi G, Magnani F. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees[J]. Plant Cell and Environment, 2005, 28(7): 834-849. |
[39] | 庞进平, 王永生. 油菜幼苗光合及叶绿素荧光参数对干旱胁迫的响应及其抗旱性分析[J]. 西北植物学报, 2023, 43(2): 276-284. |
[Pang Jinping, Wang Yongsheng. Photosynthetic and ChlorophyII fluorescence responses of Rape seedlings to drought dtress and its drought resistance evaluation[J]. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(2): 276-284.] | |
[40] |
丁效东, 张士荣, 刘阳超, 等. 真盐生植物梭梭和囊果碱蓬幼苗耐干旱能力的研究[J]. 草业学报, 2015, 24(11): 240-246.
doi: 10.11686/cyxb2014542 |
[Ding Xiaodong, Zhang Shirong, Liu Yangchao, et al. Effect of study of resistance to dehydration in Haloxylon ammodendron and Suaeda physophora seedlings[J]. Acta Prataculturae Sinica, 2015, 24(11): 240-246.]
doi: 10.11686/cyxb2014542 |
|
[41] | Ghobadi M, Taherabadi S, Ghobadi M E, et al. Antioxidant capacity, photosynthetic characteristics and water relations of sunflower (Helianthus annuus L. ) cultivars in response to drought stress[J]. Industrial Crops and Products, 2013, 50: 29-38. |
[42] |
朱成刚, 陈亚宁, 李卫红, 等. 干旱胁迫对胡杨PSII光化学效率和激能耗散的影响[J]. 植物学报, 2011, 46(4): 413-424.
doi: 10.3724/SP.J.1259.2011.00413 |
[Zhu Chenggang, Chen Yaning, Li Weihong, et al. Effect of drought stress on photochemical efficiency and dissipation of excited energy in photosystemII of Populus euphratica[J]. Chinese Bulletin of Botany, 2011, 46(4): 413-424.] | |
[43] | Xu C, Leskovar D I. Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress[J]. Scientia Horticulturae, 2015, 183: 39-47. |
[44] | Elsalahy H, Reckling M. Soybean resilience to drought is supported by partial recovery of photosynthetic traits[J]. Frontiers in Plant Science, 2022, 13: 971893. |
[45] | Parkash V, Singh S. A review on potential plant-based water stress indicators for vegetable crops[J]. Sustainability, 2020, 12(10): 3945. |
[1] | ZHANG Lingxue, LI Xiaofeng, QU Jun, MA Meiyu, ZHANG Jianbin, LI Yaoming. Effects of water and salt stress on the physiological growth characteristics of Atriplex canescens [J]. Arid Zone Research, 2024, 41(10): 1767-1777. |
[2] | YAN Qiaofang, SHAN Lishan, XIE Tingting, WANG Hongyong, SHI Yating. Morphological characteristics of the leaves and roots of Caroxylon passerinum seedlings in response to drought-induced stress [J]. Arid Zone Research, 2024, 41(1): 92-103. |
[3] | BAI Ju, LIU Xiaolin, LI Shen, LIANG Zheming, XU Zihang, WANG Yongliang, YANG Zhiping. Mechanism of sludge alkaline thermal hydrolysis liquid on the growth of Brassica chinensis under drought stress [J]. Arid Zone Research, 2024, 41(1): 80-91. |
[4] | XU Mengqi, GAO Yanju, ZHANG Zhihao, HUANG Caibian, ZENG Fanjiang. Effects of drought stress on growth and physiology of Alhagi sparsifolia seedlings [J]. Arid Zone Research, 2023, 40(2): 257-267. |
[5] | TIAN Xiaoxia,WEI Xiaofeng,WEI Hao,XU Mingshuang,MAO Peichun. Comprehensive evaluation of drought tolerance of six forage species at the seedling stage [J]. Arid Zone Research, 2022, 39(3): 978-985. |
[6] | LI Jialuo,GUO Mishan,GAO Guanglei,A Lasa,DU Fengmei,YIN Xiaolin,DING Guodong. Physiological responses of mycorrhizal seedlings of Pinus sylvestris var. mongolica to drought stress [J]. Arid Zone Research, 2021, 38(6): 1704-1712. |
[7] | YANG Biaosheng,SHAN Lishan,MA Jing,XIE Tingting,YANG Jie,WEI Changlin. Response of growth and root morphological characteristics of Reaumuria soongorica seedlings to drought-rehydration [J]. Arid Zone Research, 2021, 38(2): 469-478. |
[8] | SANG Yu,GAO Wenli,Zainur Tursu,FAN Xue,MA Xiaodong. Effects of drought stress and arbuscular-mycorrhizal fungi on root growth, nitrogen absorption, and distribution of two desert riparian plant seedlings [J]. Arid Zone Research, 2021, 38(1): 247-256. |
[9] | TONG Xiao-Qin, WANG Shu-Zhi, XIA Yong, ZHANG Ye, LIU Yue-Fang, PAN Xiang-Liang. Early-warning of Drought Stress for Typical Crops in Urumqi with Chlorophyll Fluorescence Technique [J]. , 2013, 30(5): 860-866. |
[10] | ZHOU Jiang, PEI Zong-Ping, HU Jia-Jia, JIA Han-Shuai, ZHU Lin. Research on Drought Resistance of Three Plant Species in Ecological Regeneration on Rocky Slope under Drought Stress [J]. , 2012, 29(3): 440-444. |
[11] | WU Xing-Xing, WU Yi-Xin, ZHAO Zheng-Long, Rainer BORRISS, MAO Zi-Chao, CHEN Xiao-Hua, HE Yue-Qiu. Effects of Seed Dressing with 4 PGPR Strains on Growth and Grain Yield of Broad Bean (Vicia faba L.) under Drought Stress [J]. , 2012, 29(2): 203-207. |
[12] | YAN Shu-yun, ZHOU Zhi-yu, ZOU Li-na, QIN Yu. Effect of Drought Stress on Physiological and Biochemical Properties of Amorpha fruticosa Seedlings [J]. , 2011, 28(1): 139-145. |
[13] | Kurban Halil, WANG Lei, Yakup Abduxukur, Anwar Salam. Osmolyte Accumulation of Armeniaca vulgaris under Continuous Drought Stress [J]. , 2011, 28(1): 126-132. |
|