Arid Zone Research ›› 2024, Vol. 41 ›› Issue (1): 24-35.doi: 10.13866/j.azr.2024.01.03
• Weather and Climate • Previous Articles Next Articles
LI Yongguang(),YUAN Guanghui()
Received:
2023-05-27
Revised:
2023-07-30
Online:
2024-01-15
Published:
2024-01-24
LI Yongguang, YUAN Guanghui. Biophysical effects of the different underlying factors on land the surface temperature in the Qinghai Lake Basin[J].Arid Zone Research, 2024, 41(1): 24-35.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | 刘婉如, 陈春波, 罗格平, 等. 巴尔喀什湖流域土地利用/覆被变化过程与趋势[J]. 干旱区研究, 2021, 38(5): 1452-1463. |
[Liu Wanru, Chen Chunbo, Luo Geping, et al. Change processes and trends of land use/cover in the Balkhash Lake basin[J]. Arid Zone Research, 2021, 38(5): 1452-1463.] | |
[2] |
Alkama R, Cescatti A. Biophysical climate impacts of recent changes in global forest cover[J]. Science, 2016, 351(6273): 600-604.
doi: 10.1126/science.aac8083 pmid: 26912702 |
[3] |
Lee X, Goulden M L, Hollinger D Y, et al. Observed increase in local cooling effect of deforestation at higher latitudes[J]. Nature, 2011, 479(7373): 384-387.
doi: 10.1038/nature10588 |
[4] |
Li Y, Zhao M, Motesharrei S, et al. Local cooling and warming effects of forests based on satellite observations[J]. Nature Communications, 2015, 6: 6603.
doi: 10.1038/ncomms7603 pmid: 25824529 |
[5] |
Ge Q S, Zhang X Z, Zheng J Y, et al. Simulated effects of vegetation increase/decrease on temperature changes from 1982 to 2000 across the Eastern China[J]. International Journal of Climatology, 2014, 34(1): 187-196.
doi: 10.1002/joc.3677 |
[6] |
Dennis B. Biogeochemistry: Managing land and climate[J]. Nature Climate Change, 2014, 4(5): 330-331.
doi: 10.1038/nclimate2221 |
[7] |
Li M M, Liu A T, Zou W D, et al. An overview of the “Three-North” Shelterbelt project in China[J]. Forestry Studies in China, 2012, 14(1): 70-79.
doi: 10.1007/s11632-012-0108-3 |
[8] |
Davin E L, de Noblet-Ducoudre N. Climatic impact of global-scale deforestation: Radiative versus nonradiative processes[J]. Journal of Climate, 2010, 23(1): 97.
doi: 10.1175/2009JCLI3102.1 |
[9] | Pitman A J, de Noblet-Ducoudre N, Cruz F T, et al. Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study[J]. Geophysical Research Letters, 2009, 14: 36. |
[10] | Baldocchi D, Ma S. How will land use affect air temperature in the surface boundary layer? Lessons learned from a comparative study on the energy balance of an oak savanna and annual grassland in California, USA[J]. Tellus Series B-chemical & Physical Meteorology, 2013, 65(1): 1393-1399. |
[11] | Biggs T W, Scott C A, Gaur A, et al. Impacts of irrigation and anthropogenic aerosols on the water balance, heat fluxes, and surface temperature in a river basin[J]. Water Resources Research, 2008, 44(12): 181-198. |
[12] | Campra P, Garcia M, Canton Y, et al. Surface temperature cooling trends and negative radiative forcing due to land use change toward greenhouse farming in southeastern Spain[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D18): 1044. |
[13] |
Yang K, Wu H, Qin J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review[J]. Global Planet Change, 2014, 112: 79-91.
doi: 10.1016/j.gloplacha.2013.12.001 |
[14] |
Burakowski E, Tawfik A, Ouimette A, et al. The role of surface roughness, albedo, and Bowen ratio on ecosystem energy balance in the Eastern United States[J]. Agricultural and Forest Meteorology, 2018, 249: 367-376.
doi: 10.1016/j.agrformet.2017.11.030 |
[15] |
Zhao K, Jackson R B. Biophysical forcings of land-use changes from potential forestry activities in North America[J]. Ecological Monogr, 2014, 84(2): 329-353.
doi: 10.1890/12-1705.1 |
[16] |
Li Y, Zhao M, Motesharrei S, et al. Local cooling and warming effects of forests based on satellite observations[J]. Nature Communications, 2015, 6: 6603.
doi: 10.1038/ncomms7603 pmid: 25824529 |
[17] |
Luyssaert S, Jammet M, Stoy P C, et al. Land management and land-cover change have impacts of similar magnitude on surface temperature[J]. Nature Climate Change, 2014, 4: 389-393.
doi: 10.1038/nclimate2196 |
[18] |
Duveiller G, Hooker J, Cescatti A. The mark of vegetation change on Earth’s surface energy balance[J]. Nature Communications, 2018, 9(1): 679.
doi: 10.1038/s41467-017-02810-8 pmid: 29463795 |
[19] |
Bright R M, Davin E, O’Halloran T, et al. Local temperature response to land cover and management change driven by non-radiative processes[J]. Nature Climate Change, 2017, 7(4): 296-302.
doi: 10.1038/NCLIMATE3250 |
[20] | Schultz N M, Lawrence P J, Lee X. Global satellite data highlights the diurnal asymmetry of the surface temperature response to deforestation[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(4): 903-917. |
[21] |
Ge J, Guo W, Pitman A J, et al. The nonradiative effect dominates local surface temperature change caused by afforestation in China[J]. Journal of Climate, 2019, 32(14): 4445-4471.
doi: 10.1175/JCLI-D-18-0772.1 |
[22] | 康利刚, 曹生奎, 曹广超, 等. 青海湖流域地表温度时空变化特征研究[J]. 干旱区地理, 2023, 46(7): 1084-1097. |
[Kang Ligang, Cao Shengkui, Cao Guangchao, et al. Spatiotemporal variation of land surface temperature in Qinghai Lake Basin[J]. Arid Land Geography, 2023, 46(7): 1084-1097.] | |
[23] |
Williams A, Richardson A D, Reichstein M, et al. Improving land surface models with FLUXNET data[J]. Biogeosciences, 2009, 6(7): 1341-1359.
doi: 10.5194/bg-6-1341-2009 |
[24] | Juang J Y, Katul G G, Siqueira M B, et al. Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern United States[J]. Geophysical Research Letters, 2007, 34(21): 031296. |
[25] | Shi M. Response of surface air temperature to small-scale land clearing across latitudes[J]. Environmental Research Letters, 2014, 3(9): 206-222. |
[26] | Betts A K, Desjardins R, Worth D, et al. Impact of land use change on the diurnal cycle climate of the Canadian Prairies[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(21): 11-12. |
[27] |
Zhao K, Jackson R B. Biophysical forcings of land-use changes from potential forestry activities in North America[J]. Ecological Monographs, 2014, 84(2): 329-353.
doi: 10.1890/12-1705.1 |
[28] |
Broucke S V, Luyssaert S, Davin E L, et al. New insights in the capability of climate models to simulate the impact of LUC based on temperature decomposition of paired site observations[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(11): 5417-5436.
doi: 10.1002/jgrd.v120.11 |
[29] | He Y, D’Odorico P, De Wekker S F J, et al. On the impact of shrub encroachment on microclimate conditions in the northern Chihuahuan desert[J]. Journal of Geophysical Research, 2010, 115: D21120. |
[30] | 李岳坦, 李小雁. 青海湖流域沙柳河湿地草地和具鳞水柏枝灌丛小气候特征研究[J]. 地球环境学报, 2014, 5(3): 173-185. |
[Li Yuetan, Li Xiaoyan. Microclimate features of grassland communities and Myricaria squamosa Desv. shrubs in Shaliu River Wetland, Qinghai Lake Basin[J]. Journal of Earth Environment, 2014, 5(3): 173-185.] | |
[31] | 赵梦启, 高满, 陈喜, 等. 不同覆被下的温度日变化特征及空间尺度效应——以贵州陈旗小流域为例[J]. 长江流域资源与环境, 2015, 24(S1): 115-122. |
[Zhao Mengqi, Gao Man, Chen Xi, et al. Daily temperature characteristics and effect of spatial scale for different types of vegetation: A case study of Chenqi Catchment in Guizhou Province[J]. Resources and Environment in the Yangtze Basin, 2015, 24(S1): 115-122.] | |
[32] |
Chen L, Dirmeyer P A. Adapting observationally based metrics of biogeophysical feedbacks from land cover/land use change to climate modeling[J]. Environmental Research Letters, 2016, 11(3): 034002.
doi: 10.1088/1748-9326/11/3/034002 |
[33] | Li X, Yang X, Ma Y, et al. Qinghai Lake Basin critical zone observatory on the Qinghai-Tibet Plateau[J]. Vadose Zone Journal, 2018, 17(1): 1-11. |
[34] | Li X, Ma Y, Huang Y, et al. Evaporation and surface energy budget over the largest high-altitude saline lake on the Qinghai-Tibet Plateau[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(18): 10470-10485. |
[35] |
Yuan G, Zhang Y, Li E, et al. Effects of different land use types on soil surface temperature in the Heihe River Basin[J]. Sustainability, 2023, 15(4): 3859.
doi: 10.3390/su15043859 |
[36] |
He Y, Wekker S, Fuentes J D, et al. Coupled land-atmosphere modeling of the effects of shrub encroachment on nighttime temperatures[J]. Agricultural and Forest Meteorology, 2011, 151(12): 1690-1697.
doi: 10.1016/j.agrformet.2011.07.005 |
[37] | Yuan G, Zhang L, Liang J, et al. Impacts of initial soil moisture and vegetation on the diurnal temperature range in arid and semiarid regions in China[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(21): 11568-11583. |
[38] |
Wilson K, Goldstein A, Falge E, et al. Energy balance closure at FLUXNET sites[J]. Agricultural and Forest Meteorology, 2002, 113(1): 223-243.
doi: 10.1016/S0168-1923(02)00109-0 |
[39] |
Wang L, Lee X, Schultz N, et al. Response of surface temperature to afforestation in the Kubuqi Desert, Inner Mongolia[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(2): 948-964.
doi: 10.1002/jgrd.v123.2 |
[40] | 李尔晨, 张羽, 苑广辉. 定量评估黑河流域4种下垫面类型对地表温度的影响[J]. 干旱区研究, 2023, 40(1): 30-38. |
[Li Erchen, Zhang Yu, Yuan Guanghui. Quantify the impacts of four land cover types on surface temperature in the Heihe River Basin[J]. Arid Zone Research, 2023, 40(1): 30-38.] |
|